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Abstract

Despite the critical importance of the medical domain
in Deep Learning, most of the research in this area solely
focuses on training models in static environments. It is
only in recent years that research has begun to address
dynamic environments and tackle the Catastrophic Forget-
ting problem through Continual Learning (CL) techniques.
Previous studies have primarily focused on scenarios such
as Domain Incremental Learning and Class Incremental
Learning, which do not fully capture the complexity of real-
world applications. Therefore, in this work, we propose
a novel benchmark combining the challenges of new class
arrivals and domain shifts in a single framework, by con-
sidering the New Instances and New Classes (NIC) sce-
nario. This benchmark aims to model a realistic CL set-
ting for the multi-label classification problem in medical
imaging. Additionally, it encompasses a greater number of
tasks compared to previously tested scenarios. Specifically,
our benchmark consists of two datasets (NIH and CXP),
nineteen classes, and seven tasks. To solve common chal-
lenges (e.g., the task inference problem) found in the CIL
and NIC scenarios, we propose a novel approach called
Replay Consolidation with Label Propagation (RCLP). Our
method surpasses existing approaches, exhibiting superior
performance with minimal forgetting.

1. Introduction

In recent years, several studies have proven the efficacy
of using Deep Learning models to detect diseases from
chest X-ray images [20,51]. While these models allowed
for improved state-of-the-art in the medical field, several
significant challenges must be addressed before considering
their use to support decision-making in realistic scenarios.
One such challenge is ensuring the model’s adaptability in
dynamic environments, where shifts in input data distribu-
tion may occur over time [25,42].

For instance, each hospital may employ machines with
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different image acquisition techniques; this can perturb the
performance of a previously trained model, requiring ongo-
ing recalibration and refinement [26]. Moreover, the need
to detect diseases not initially incorporated into the trained
model may arise. For instance, the labeling of additional
classes may have been provided at a later point in time, re-
flecting evolving medical understanding and diagnostic cri-
teria [40].

Failure to address these challenges can severely limit the
model’s utility and constrain its ability to effectively serve
patient needs. A paradigm called Continual Learning (CL)
has emerged in the literature to solve this problem. CL en-
ables the model to adapt to new data while retaining knowl-
edge from the old data. Previous studies in this domain
focused on solving the problem in two different settings:
Domain Incremental Learning (DIL) and Class Incremental
Learning (CIL). However, these scenarios fail to accurately
represent real-world challenges where both new classes and
domain shifts can happen. Therefore, we propose a novel
benchmark for the medical imaging field based on the New
Instances & New Classes (NIC) scenario [30]. Specifi-
cally, we evaluate this scenario in the context of pathology
classification of chest X-ray images, considering nineteen
classes, seven tasks, and two domains. This setting com-
bines the challenges of both new class arrivals and domain
shifts within a single framework, mirroring the complexi-
ties often encountered in realistic applications like medical
imaging [30].

On the proposed benchmark, the most well-known tech-
niques in the CL field are tested. In particular, replay-based
and distillation-based approaches are tested since they are
often used to solve the CIL scenario in image classifica-
tion [25,40]. However, these approaches face limitations
in multi-label settings such as the one considered. Replay-
based approaches may suffer from task interference be-
tween the samples from the current task and the replayed
samples [44]. Instead, distillation-based methods dete-
riorate when old classes do not reappear in future tasks
[19]. Therefore, we introduce a novel approach called Re-
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Figure 1. Scheme of the multi-label CL setting in the context of classification of chest X-rays. Diagnostic capabilities are expanded over

time with new tasks.

play Consolidation with Label Propagation (RCLP) to solve
these challenges.

Overall, we make the following contributions:

* We introduce a novel benchmark for CL in medical
imaging, combining the challenges of new class ar-
rivals and domain shifts in a single framework.

* We propose Replay Consolidation with Label Propa-
gation, a novel method to address the multi-label im-
age classification problem in the medical imaging set-
ting.

» Experimental results demonstrate the effectiveness of
RCLP, outperforming existing methods and achieving
performance improvements.

In addition, to promote further research in the domain
and facilitate the advancement of novel methodologies
along with comparisons with state-of-the-art approaches,
we make the code available.'

Our work is structured as follows. Sec. 2 provides an
overview of the CL literature with a focus on the medical
domain. Sec. 3 presents the proposed benchmark for multi-
label medical imaging, while Sec. 4 proposes the RCLP ap-
proach. In Sec. 5 describes the experimental setting, and in
Sec. 6 reports the results of our experiments. Lastly, Sec. 7
concludes this work by discussing limitations and future re-
search directions.

2. Related Work

In Sec. 2.1, we provide an overview of the most popular
CL scenarios and methods. Following that, we focus on the

lhttps://qithub.Com/marinacecconl/RCLP

medical domain and chest X-ray image classification for the
CL setting in Sec. 2.2.

2.1. Continual Learning

CL has emerged as a framework to adapt models to new
data distributions without forgetting what they have already
learned [27]. The main problem tackled by the CL methods
is the so-called catastrophic forgetting. By fine-tuning the
new distributions of data, the knowledge of old data gets
completely corrupted [23, 35]. In the CL literature, most
works refer to three CL scenarios: Domain-Incremental,
Class-Incremental, and Task-Incremental Learning [45]. In
the DIL scenario, each new task presents a shift in the input
data distribution but the classes are always the same [27]. In
the CIL scenario, each task contains new classes. The Task-
Incremental scenario, contrary to the previous two, has the
peculiarity of providing the task ID during the testing phase.

The methods in the CL literature can be grouped into
three big families. Rehearsal-based techniques assume
storing and reusing past data samples during training.
Within this category, various approaches exist; a prominent
method is Experience Replay [36], simply referred to as
Replay. This method stores a portion of the old data in
memory. While training on a new task, the new data is
combined with the data from the memory buffer to maintain
knowledge of old tasks.

Regularization-based approaches consider additional
penalties or constraints during training to maintain the
memory of old tasks. For example, Learning without
Forgetting (LWF) exploits the idea of knowledge distilla-
tion [14] to force the model outputs on the current data to
be similar to the old model’s. Similarly, Pseudo-Label also
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Figure 2. Benchmark proposed for the medical imaging field. The figure presents a New Instances & New Classes scenario, where some
tasks introduce new classes while other tasks involve previously seen classes but with a shift in the input data distribution. Our proposed
stream consists of a sequence of seven tasks, encompassing a total of nineteen classes across two domains.

uses the model trained on the previous task [13]. While
visiting the data of a new task, the new task samples are
passed through the old model, and the predictions on the
old labels are added to the new ground truth targets.
Architecture-based approaches, as the name suggests,
are methods that alter the original model’s architecture
to preserve previous knowledge. Techniques within this
category employ various strategies for modifying the
architecture [9,31,37].

Moreover, in CL literature, some methods propose combin-
ing different families of strategies to obtain better and more
robust performance. For example, Hou et al. [15] combine
a distillation-based approach with Replay. Another famous
example is Dark Experience Replay (DER) [2]; rather
than the ground truth targets, this method stores the logits
produced from the previous models. In this way, the
knowledge is distilled from the previously optimized
models while replaying old input samples.

2.2. CL in the Medical Domain

Previous works for CL in the medical domain have ex-
plored DIL and CIL scenarios within CL methods for clas-
sifying chest X-ray images. For the DIL scenario, Lenga
et al. [26] conduct a study considering two tasks based on
chest X-ray images; Srivastava et al. [42] address a similar
setting through a replay-based approach. Singh et al. [40]
consider a CIL scenario with three tasks encompassing 12
classes, gradually introducing new classes over time. Simi-
larly, Akundi et al. [1] study a CIL scenario with five tasks,
each with only one class, for a total of 5 classes considered.
The primary challenge in the Class Incremental Learning
(CIL) scenario within this context is its multi-label charac-
teristic, leading to the label absence problem. Specifically,
images in each task may contain multiple classes, but only
the labels relevant to the current task are provided. This is-
sue is also encountered in Object Detection [33,39] and Se-
mantic Segmentation [3,7, 1 2], where it is known as “back-
ground shift”. It is particularly problematic for Replay-
based methods, as a single sample may have different labels
across tasks, leading to interference. Consequently, many
chest X-ray studies prefer distillation-based approaches [1].

However, previous works found a significant degradation in
the performance of these approaches when assuming that
certain classes encountered at the start of the data stream
rarely reappear in subsequent tasks [19]. These considera-
tions bring additional challenges that previously proposed
methods could not handle correctly.

3. Considered Scenario
3.1. Motivation

We consider the problem of flexible collaboration across
medical institutions, enabling effective data pooling and
model sharing. The nature of healthcare systems and pro-
cesses leads to three challenges. First, medical data is
highly sensitive and subject to stringent data protection reg-
ulations [ 1]. Sharing and processing medical data across
multiple institutions is especially difficult as hospitals are
independent organizations with distinct data controllers [8].
Informed consent can enable broader processing of medical
data, but it is challenging to obtain for a large and represen-
tative group of patients [5].

Furthermore, medical diagnosis encompasses numerous
disease labels, necessitating the curation and annotation of
a comprehensive dataset across multiple pathologies, which
can take several years [24]. It is crucial for models to evolve
incrementally and incorporate information about new dis-
eases as they become available [43] or surface, as was the
case with COVID-19.

Moreover, the classification of rare pathologies often
benefits from extending models to related yet different con-
ditions [34]. Typically, access to the original data used for
training the model is not feasible due to data protection reg-
ulations. Consequently, a scenario where the model is up-
dated with only a small subset of historical data, like the
CIL setting, becomes crucial.

Finally, domain shift is inevitable, e.g., due to differ-
ences in medical equipment, acquisition protocols, and
evolving populations [20, 26,41]. This is especially true
for datasets spanning multiple sites, which may serve ar-
eas with different demographics or provide specialized care,
e.g., to different age ranges. In general, medical processes
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adopted at one hospital influence data acquisition and cause
artifacts in the data [32].

Overall, both DIL and CIL scenarios are common in the
medical domain. Clearly, they do not represent mutually
exclusive settings. Hence, a situation in which both new do-
mains and new classes appear is not only possible but also
very plausible, and it needs to be addressed. For this rea-
son, we consider a scenario termed New Instances & New
Classes. NIC combines the challenges of both new class
arrivals and domain shifts within a single framework, mir-
roring the complexities often encountered in realistic appli-
cations like medical imaging. This combination of different
types of shifts between tasks makes this scenario more chal-
lenging and suitable for representing intricate settings, such
as the medical domain. The concept of the NIC scenario
was initially introduced and investigated by Lomonaco et
al. [30]. It was examined within the context of a single-label
classification problem, where it is assumed there are no in-
tersections among tasks regarding labels or samples. To the
best of our knowledge, this scenario was never analyzed in
multi-label settings or the medical imaging setting.

3.2. Scenario Description

In this work, we model a NIC scenario in chest X-ray
imaging across two sites. We consider the ChestX-ray14
dataset (NIH), compiled from patients of the NIH Clini-
cal Center [47] and the CheXpert dataset (CXP), with ra-
diographies from patients treated at the Stanford Hospi-
tal [17]. Both datasets contain information on 14 diseases, 7
of which are in common. We removed non-pathology labels
from CXP, resulting in a stream of 19 classes. We divided
CXP into three tasks and the NIH dataset into four tasks, or-
dering them sequentially to create the NIC stream of tasks
represented in Figure 2. Each task models the availability
of new data at one hospital. Between tasks ¢ and 7+ 1, either
new classes are introduced, or data from previously known
classes is presented with a shift in the input data distribu-
tion.

In each task, all and only the images containing the asso-
ciated pathologies in the corresponding dataset are present.
Since several images contain multiple labels, the intersec-
tion among tasks is not null, presenting a realistic scenario
where images with previously seen (but currently not la-
beled) diseases can appear in new tasks.

3.3. Challenges

The proposed benchmark considers a multi-label image
classification problem where new classes and domains are
added over time. We identify these three challenges in the
current literature landscape of multi-label classification: (i)
the task interference problem in replay approaches, (ii) the
potential not exploited of the replay memory samples, (iii)
the strong forgetting suffered by distillation methods if pre-

viously seen classes don’t reappear in the current task.

Indeed, while replay-based approaches have shown re-
markable performance in multi-class classification prob-
lems [49], they encounter a specific challenge known as task
interference in multi-label continual learning (CIL) settings.
This interference arises between the current task samples
and the replayed samples, when the intersection between
tasks is not null, as each sample only contains information
about the labels of the relative task. The same problem
is encountered when solving other CL problems in multi-
label settings, such as Object Detection [39] and Semantic
Segmentation [19], where it is referred to as “foreground
shift” [50].

Moreover, we state that another problem of the Replay
approach is that the replay memory is not fully exploited.
Indeed, for each stored image, only the labels seen during
its task are available, while all other labels are assumed to
be unknown or absent. However, this hides the potential of
the memory, which could contain much more information
than what is actually stored.

Distillation-based methods have demonstrated subopti-
mal performance in single-label classification tasks [26].
Conversely, they find extensive application in other prob-
lems such as semantic segmentation [3] and object detec-
tion [39]. However, distillation methods demonstrate sig-
nificant forgetting when previously encountered classes do
not reappear in the current task, a scenario often unrealis-
tic in practical applications. In other words, unlike replay
methods, distillation-based methods used in multi-label set-
tings perform better when there is a considerate intersection
between tasks.

In the considered scenario, all these challenges are
present. There is some intersection between tasks, causing
the interference issue in Replay. However, the diseases of
the first tasks are rare, hence they do not appear frequently
in subsequent tasks, thereby challenging distillation meth-
ods. Lastly, since the considered setting is multi-label, the
problem of the under-exploitation of the replay buffer is
present.

4. Proposed approach: Replay Consolidation
with Label Propagation

To tackle the challenges described in Sec. 3.3, we pro-
pose Replay Consolidation with Label Propagation. The
advantages of our approach are threefold: (1) the integra-
tion of old knowledge on the new task samples and of new
knowledge on the replay buffer samples, together with a
Masking Loss, mitigate the issue of task interference of Re-
play; (2) the Replay memory is optimized since the targets
provide information not only on the labels from their origi-
nating tasks but also from all preceding tasks up to the cur-
rent one; (3) by replaying samples that contain old classes,
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Figure 3. Representation of the RCLP method: (a) New task samples and those from the replay memory buffer are used for training.
New task samples are first processed through the old model to generate pseudo-labels. The loss for replayed samples is masked to focus
on old task labels and combined with classification and intermediate losses. (b) Memory buffer consolidation via label propagation. The
backward step updates the buffer with new knowledge, while the forward step integrates old knowledge into new task samples. Some of
these updated samples are then saved to the memory buffer after training.

the limitations of distillation are overcome. The compre-
hensive strategy is depicted in Fig. 3.

4.1. Label Propagation: Forward step

The first issue we address is that during the training of
the model on new samples, these samples contain informa-
tion only about the new labels and lack information on la-
bels seen in previous tasks. Therefore, in this part, we aim
to incorporate the information on the old labels into the new
data, and subsequently in the replay buffer, via the pseudo-
labeling technique.

This step can be defined formally as follows. Let X;, Y;
be the data associated with task ¢. Let X ;, Y), be the data
associated with the Replay memory. Let fy, be the model
after being trained on task ¢. Let L, be the set of labels as-
sociated with task 4, y~¢ the output produced by the model
concerning the labels L;, and yJLl the j-th output from the
labels L;. During the training of task ¢, given a sample
x € X, the forward step adjusts the ground truth associated
with each y € Y;, relative to the labels L4, ..., L;_1, to in-
tegrate the knowledge of the previously optimized model
fo,_,. To achieve this goal, we utilize the predictions gen-
erated by the previous model, denoted as %1, ..., gle-1.
These predictions undergo a thresholding process where

each class label is determined. Subsequently, these pre-
dicted labels replace the outdated labels in the ground truth
vector y.

1 ittt 1< <Ly
Vy €Y y; {07 ifg;h<h  1<i<t—1 (D

After training on the new task ¢, a subset of the samples
from task ¢ is saved in the memory buffer M. The targets
associated with these samples, relative to old tasks labels,
are determined using the label propagation technique previ-
ously described. This approach ensures that, following the
training on task ¢, the memory buffer contains samples with
information relevant to all tasks up to and including task .

4.2. Label Propagation: backward step

As described in section 3.3, the main problem of the re-
play approach is that the samples for each task contain only
the labels of said task, as shown in Fig. 4a. This repre-
sents an underuse of the potential information of the data
contained in memory, which could be able to express much
more, and it’s a partial cause of the interference issue. We
partially solve this problem by performing the forward step
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Figure 4. Representation of replay memories for different ap-
proaches. The vertical axis represents the samples of each task,
while the horizontal axis is the labels associated with each task.
(a) Each task of the Replay memory has information only on the
labels seen during its iteration. (b) The forward step of label prop-
agation, saves samples that are informative of all tasks up to the
current one. (c) The backward step integrates the knowledge of
the new labels in the replay buffer.

of Label Propagation when creating the new replay mem-
ory. In this way, samples from task ¢ in the memory buffer
are informative on all tasks up to task ¢, as shown in figure
4b.

While this approach reduces the interference issue, the
samples in the memory buffer do not contain any informa-
tion about the tasks that come after their respective task of
origin. Therefore, we propose the backward step of Label
Propagation to consolidate the new knowledge acquired af-
ter training on a new task in the old samples of the replay
buffer, as shown in Fig. 4c.

The procedure can be described formally as:

e ALy

A Py Py

O, if Yj ¢ S h

2

In other words, after training the model on the new task

t, the samples in the replay buffer, coming from previous

tasks, are given as input to the model, and the pseudo-labels

relative to the current task are computed and added to the
ground truth targets.

Yy € Y yf‘:{

4.3. Masking Loss

After performing the label propagation step, only the la-
bels relative to the current task in the replayed samples are
absent. Therefore, we propose a masking loss to overcome
this issue. When the model revisits old samples, the mask-
ing loss ensures that the model’s outputs are only influenced
by the labels of the old tasks. This effectively 'masks’ the
influence of the old samples on the new labels, preventing

task interference.

Lar(a,,9) = Lpce(y,9) re Xy
MAS Zz_l Lpce(yh,9t), =€ Xy

4.4. Feature Distillation

3)

To further improve the model’s performance, we con-
sider the feature distillation technique on the intermediate
representations of the model [28]. Let our model f be com-
posed as g4 (h ()), where given x, h produces the features,
and the classifier g is trained on such features. The main
idea of feature distillation is that the features produced by
the new model on the new and old data should not deviate
too far from the features produced by the previous model
on said data. This allows the model to maintain a more
consolidated memory mitigating the effects of catastrophic
forgetting. Formally, given an input sample x:

Lpp = Hg¢t (hwt (1‘)) - g¢t—1(hw171(z))” “)

The input could either come from the new task or from the
replay buffer. Therefore the final loss is built in the follow-
ing way:

4.5. Method Analysis

In conclusion, RCLP optimally leverages the strengths
of both distillation and rehearsal methods. To address the
problem of task interference, we split our RCLP approach
into multiple components. We propose the Label Propaga-
tion technique, which can be divided into two steps. The
forward step, like Pseudo-Label, enables new samples to
leverage the knowledge from a previously optimized model
to acquire the old labels. However, unlike Pseudo-Label,
our approach applies this step not only during training but
also to consolidate information within the replay memory
buffer. Instead, the backward step allows the injection of
the new knowledge (acquired after the training on the new
task) into the samples of replay memory. In this way, a
relevant advantage of Label Propagation is represented by
the full exploitation of Replay memory by utilizing samples
that contain information on all seen tasks (as depicted by
Fig. 4). Moreover, we introduce a Masking Loss to fur-
ther mitigate the task inference issue by considering only
the old labels in the replay samples, hence avoiding the cal-
culation of loss on the labels of the current task. In addition,
to enhance final performance and reduce further forgetting,
a feature distillation loss is implemented.

Moreover, unlike other methods [7] that update replayed
samples with the most recent model, which can lead to un-
reliable predictions due to forgetting, our method updates
replayed sample labels only once, immediately after train-
ing on the current task, ensuring more robust pseudo-labels.
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Additionally, the computational cost of RCLP is similar
to that of methods like DER and LwF Replay [2, | 5]. It re-
quires storing a subset of past samples (as in Replay) and
weights of previous models (as in distillation). Label prop-
agation does not increase memory use, as pseudo-labels re-
place original labels, and the masking and intermediate loss
procedures do not add extra overhead. While replay in-
creases computation time compared to Fine-Tuning, the la-
bel propagation steps are minimal. Each minibatch passes
through both old and new models, similar to LwF, with-
out significantly affecting computation time. Processing the
memory buffer after each task is also efficient, as its small
size makes it comparable to computing a validation loss.

5. Experimental Setting

We test the following methods against the benchmark:
Joint training, Fine tuning, Replay, LwF, Pseudo-Label,
LwF-Replay, DER. Following the literature on training
classification models on chest X-ray images [38], we se-
lected a 121-layer DenseNet [16] architecture pre-trained
on ImageNet [0] for our study. We employed the binary
cross-entropy loss function and optimized the models using
the Adam [22] optimizer with a learning rate set at 0.0005.
For both datasets, we used an 80-10-10 split between train-
ing, validation, and test sets. Consistent with findings from
previous works [48] indicating that using a single image
per patient does not significantly impact performance, we
included only one image per patient, prioritizing frontal im-
ages. All images were resized to 256 x 256 and normal-
ized via the mean and standard deviation of the ImageNet
dataset. As an upper bound for our methods, we considered
Joint Training, which consists in simultaneously training on
all tasks. In this case, we reduced the learning rate by a
factor of 2 if the validation loss did not improve over three
epochs and stopped training if the validation loss did not im-
prove over 10 epochs. For all other methods besides Joint
training, we trained on each task for 10 epochs. As a lower
bound, we evaluated the Fine-Tuning approach, where each
task is trained sequentially, with no additional technique to
avoid catastrophic forgetting. For the Replay approach, we
consider a mix ratio of 50% and a memory size correspond-
ing to 3% of the original dataset size. The samples to store
in the memory buffer and to propose to the model in future
tasks are chosen uniformly at random. In LwF [29], the loss
is computed as L = Ly + 7L, where L is the loss for the
current task, while Lo is the distillation loss; we set 7 = 2,
following the literature [29]. For Pseudo-Label, we define
a different threshold for each class, choosing the one found
to maximize the F1 score on the validation sets relative to
the origin task of each label. When no new labels are intro-
duced between task 7 and task ¢ + 1, the thresholds remain
fixed at the values that were optimal in the previous valida-
tion sets. For the LwF-Replay approach, we used the same

hyperparameters and sampling strategy of Replay and LwF.
Similarly, for the DER approach, the same hyperparameters
of Replay are used. Finally, for our approach, we adopt the
same hyperparameters and sampling strategy as in Replay
and employ the same technique for computing thresholds as
in Pseudo-Label. Moreover, for computing the intermediate
distillation loss, we utilized the output of the 12th block out
of the 16 blocks in the DenseNet architecture. Lastly, the
parameter ~y of the feature distillation loss in Eq. 4.4 is set
to 1.

Evaluation metrics We use the macro F1 score as the
primary metric for evaluating model performance, as it is
common in multi-label classification [10,46]. The macro
F1 averages the F1 score for each label, balancing precision
and recall, making it ideal for imbalanced datasets. Its fo-
cus on positive cases, like detecting pathologies in medical
images, adds relevance in this domain. We also report the
AUC ROC, a popular metric for medical image classifica-
tion [26,38,42], though it can be misleading on imbalanced
datasets due to its limitations in reflecting poor model per-
formance [18].

For the evaluation over a stream of tasks, we consider
the Average F1 over all the pathologies of all tasks up to i,
as typical in CL papers [1,26]. Similarly, we measure the
percentual forgetting, proposed in previous papers in CL lit-
erature [4,21], hence the percentage difference between the
final performance of the model on each task and the perfor-
mance just after training on said task. Lastly, we consider
the Relative gap between each method’s final performance
and the upper baseline’s performance, i.e., Joint Training.
The formulas for computing these two metrics are reported
in the Appendix.

—e— Joint —e— LwF Replay
Fine-Tuning —8— Pseudo-Label
0.05 4 —8— Replay RCLP
—— LwF —&— DER

0 1 2 3 4 5 6
Tasks

Figure 5. F1 score during the task stream for each method.

6. Results

In the next part, we discuss the outcomes produced by
each method when applied to the proposed challenging
benchmark. Specifically, we will elucidate the achieved re-
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Table 1. In bold is reported the best value for each metric among the compared CL approaches. Average F1, Forgetting, and Relative gap

metrics are as defined in Sec. 5.

Metrics
Strategy Avg. F11 | Avg. AUC 1 | Forgetting F1 | | Relative gap |
Joint Training 0.38 0.79 - -

Fine-Tuning 0.02 0.55 100% 95%
Replay 0.15 0.65 59% 60%
LwF 0.22 0.68 41% 42%
LwF Replay 0.18 0.68 48% 52%
DER 0.12 0.58 73% 68%
Pseudo-Label 0.24 0.69 21% 37%
RCLP (ours) 0.27 0.69 2.4% 29%

sults concerning the F1 performance in Sec. 6.1. Subse-
quently, we delve deeper by examining the forgetting be-
havior exhibited by each method in Sec. 6.2.

6.1. Performance results

The results are reported in Tab. 1, while the average F1
metric over time for each method is shown in Fig. 5. The
reported results are averaged over multiple repetitions to re-
duce the effect of randomness on the experimental results.
Despite the issue of task interference, Replay has an aver-
age F1 score of 0.15, still much higher than the lower bound
Fine-Tuning that achieves an F1 of 0.02. This discrepancy
in performance between the two methods can be observed
from the relative gap as well: 95% for Fine-Tuning and 60%
for Replay. LwF outperforms Replay, as expected from
the literature [39], exhibiting a significant improvement,
achieving an average F1 score of 0.22. Pseudo-Label per-
forms similarly to LwF, with a marginally higher F1 score
of 0.24. Interestingly, the combination of LWF and Replay,
LwF-Replay, isn’t able to produce satisfactory results, ob-
taining an F1 value (0.18) lower than that of the LwF and
Pseudo-Label methods taken singularly. This is expected
due to the interference caused by Replay, which is not over-
come by combining the method with LwF. For the same
reasons, DER performs very poorly as well, achieving a fi-
nal F1 of 0.12, lower than all methods besides Fine-Tuning.
Indeed, as discussed, a series of challenges need to be ad-
dressed to exploit the advantages of replay-based methods
together with distillation-based methods in the multi-label
setting. Lastly, our approach, Replay Consolidation with
Label Propagation, achieves an F1 score of 0.27 and a rel-
ative gap of 29%, exhibiting a notable improvement with
respect to the other methods, as shown in Tab. 6 and Fig.
5).

6.2. Forgetting Analysis

Another interesting analysis concerns the forgetting met-
ric (shown in Tab. 1). The first general insight is that the

forgetting values are notably high across all methods be-
sides RCLP, ranging from 73% for DER to 21% for Pseudo-
Label. When examining our proposed approach, RCLP, we
note a remarkably low forgetting rate of 2.4%, with the final
performance clearly outperforming all other methods. This
is also supported by the results in the Appendix.

7. Conclusions and Future Work

Our work introduces a novel benchmark tailored for
evaluating CL methods in the domain of multi-label medi-
cal image classification. This benchmark includes different
medical imaging datasets, pathologies, and imaging condi-
tions. In particular, we designed the benchmark by consid-
ering realistic conditions in the medical settings and com-
bining new classes and domains in the task stream.

Because of the challenges encountered in the scenario,
we proposed a novel method called Replay Consolidation
with Label Propagation (RCLP). Our method outperforms
existing approaches in the field of multi-label image classi-
fication within the medical domain, demonstrating signifi-
cantly superior performance with minimal forgetting.

While our approach has demonstrated high effectiveness
in handling multi-label classification problems within the
medical setting, its applicability to other settings still needs
to be explored. In future work, we plan to evaluate the ef-
fectiveness of RCLP in other scenarios, such as object de-
tection and semantic segmentation problems. Additionally,
we intend to evaluate variations of the proposed method,
such as exploring alternative approaches for computing the
thresholds used in Pseudo-Labeling, as well as different
strategies for selecting the samples to be stored in the re-
play buffer.
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