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Abstract

Undesirable biases encoded in the data are key drivers of algorithmic dis-
crimination. Their importance is widely recognized in the algorithmic fair-
ness literature, as well as legislation and standards on anti-discrimination in
AI. Despite this recognition, data biases remain understudied, hindering the
development of computational best practices for their detection and mitiga-
tion.

In this work, we present three common data biases and study their in-
dividual and joint effect on algorithmic discrimination across a variety of
datasets, models, and fairness measures. We find that underrepresentation
of vulnerable populations in training sets is less conducive to discrimination
than conventionally affirmed, while combinations of proxies and label bias
can be far more critical. Consequently, we develop dedicated mechanisms
to detect specific types of bias, and combine them into a preliminary con-
struct we refer to as the Data Bias Profile (DBP) . This initial formulation
serves as a proof of concept for how different bias signals can be systemati-
cally documented. Through a case study with popular fairness datasets, we
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demonstrate the effectiveness of the DBP in predicting the risk of discrimi-
natory outcomes and the utility of fairness-enhancing interventions. Overall,
this article bridges algorithmic fairness research and anti-discrimination pol-
icy through a data-centric lens.

Keywords: AI Act, algorithmic fairness, anti-discrimination, bias
detection, data bias

1. Introduction

Algorithmic anti-discrimination is a relatively young field, rapidly mov-
ing from niche research to market readiness (Álvarez et al., 2024). Several
years of work carried out by a growing research community have convincingly
shown that algorithms developed without attention to fairness put vulner-
able groups at a systematic disadvantage (Angwin et al., 2016; Obermeyer
et al., 2019; Glazko et al., 2024). Recognizing the critical implications of this
research, policymakers and standards organizations have published regula-
tions and norms on the topic (Schwartz et al., 2022; Parliament, 2024; ISO,
2021). These documents require standardization to apply across many do-
mains where fairness work is critical, including medicine (Obermeyer et al.,
2019), finance (Gillis et al., 2024), employment (Fabris et al., 2024), and
education (Baker and Hawn, 2022).

Evaluations of data bias are key computational tools for anti-discrimination
work. Since biases in the data are fundamental drivers of algorithmic dis-
crimination (Vetrò et al., 2021; Brzezinski et al., 2024), bias management
is mentioned in every recent standard and regulation on algorithmic anti-
discrimination (Schwartz et al., 2022; Parliament, 2024; ISO, 2021). Policy
formulations on this topic are rather vague, favouring flexibility on one hand,
but leaving the contours of law-abiding bias management undefined for prac-
titioners, contributing to legal risk and uncertainty. For example, recent
regulation requires providers of AI systems in high-risk domains to signal
sufficient efforts of bias detection and mitigation. How this should be done
in practice, however, is left completely undefined (Deck et al., 2024).

Defining precise criteria for bias management requires answering several
important questions, left mostly unaddressed in the fairness literature. First,
different data biases are associated with algorithmic discrimination. Which
combinations of biases are more critical for fairness? Second, data biases are
typically described qualitatively but vastly lack a quantitative characteriza-
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tion. Is it possible to monitor distinct data biases unambiguously? Third,
while a plethora of fairness interventions exist in the literature, a set of guide-
lines to prioritize them is prominently lacking. In sum, how can practitioners
and researchers make decisions about bias mitigation in a principled manner?

Contributions. In this work, we tackle the above questions, providing
several contributions.

• We study three types of data bias widely recognized for their negative
influence on algorithmic fairness, namely underrepresentation, label
bias, and proxies. Through extensive experiments on diverse datasets,
algorithms, and fairness measures we analyze their joint influence on
algorithmic discrimination. Our experiments show that underrepresen-
tation in training data is overemphasized in the literature while label
bias is more critical. This novel result challenges conventional wisdom
held in the algorithmic fairness community.

• We propose a principled mechanism for bias detection that is widely
applicable in practice. More in detail, we develop a suite of measures to
detect specific data biases without auxiliary information from external
sources. We integrate these measures into a preliminary construct, the
Data Bias Profile (DBP), which provides a quantitative foundation for
identifying and communicating data biases, as well as assessing the
risk of algorithmic discrimination. This framework serves as a proof of
concept, offering a concrete starting point that the research community
can build upon to develop a more robust and systematic approach to
bias-aware data documentation. .

• We discuss the far-reaching implications of our work for researchers
and practitioners. We recommend that researchers use DBPs to select
datasets with complementary properties for their experiments, over-
coming the present limitations of fairness benchmarks. Finally, we
make recommendations for practitioners on the curation and utiliza-
tion of anti-discriminatory datasets.

Structure. Section 2 presents related work. Section 3 introduces data
bias and experimental protocols to analyze it. Section 4 studies the effect of
data bias. Section 5 describes bias detection, introducing and demonstrating
DBPs. Sections 6 and 7 discuss our results in the broader context of algo-
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rithmic fairness work concluding with recommendations for researchers and
practitioners.

2. Related Work

Algorithmic fairness research keeps contributing new approaches to mea-
sure the risk of discrimination (Cornacchia et al., 2023; Chen et al., 2024; Fab-
ris et al., 2023; Cooper et al., 2024) and to mitigate it (Yin et al., 2023; Cruz
and Hardt, 2024; Zhang et al., 2024; Fajri et al., 2024). Moving fairness to-
ward market readiness requires research on operationalizing algorithmic anti-
discrimination policy (§2.1), on its close connection with data bias (§2.2), and
on principled documentation practices to support anti-discrimination (§2.3).

2.1. AI policy on anti-discrimination

Influential legislation and standards on anti-discrimination in AI, such
as the EU AI Act (Parliament, 2024) and the NIST report on bias in AI
(Schwartz et al., 2022) require multi-disciplinary research to translate policy
into computational best practices. Drukker et al. (2023), for example, com-
plement NIST guidelines with a list of domain-specific biases that arise in
the medical domain. Borgesius et al. (2024) focus on the AI Act, summa-
rizing the main requirements for mandatory evaluation of data biases and
their documentation. Deck et al. (2024) compile a list of practical challenges
for compliance with anti-discrimination requirements outlined in the AI Act.
By highlighting the need for model owners to examine “possible biases that
are likely to [...] lead to discrimination prohibited under Union law”, they
stress the pressing questions of which biases lead to discriminatory models
and what kind of evidence is required to signal sufficient efforts for bias detec-
tion and correction. Our work aims to provide flexible computational tools
to answer this question across different domains.

2.2. Linking fairness with data properties

A growing line of work centers on quantifying data biases and their influ-
ence on models. Guerdan et al. (2023) describe five sources of bias affecting
target variables and develop a causal framework to disentangle them. Bau-
mann et al. (2023) present several data biases and provide initial insights
into their mitigation. Brzezinski et al. (2024) study the variability of fairness
measures with respect to the underrepresentation of protected groups and the
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imbalance between positives and negatives. They postulate certain proper-
ties (e.g. “fairness should not vary with underrepresentation”) and highlight
measures that realize said properties as more “reliable”. Fragkathoulas et al.
(2024) survey the intersection of fairness and explainability, including expla-
nations that can describe sources of unfairness.

Vetrò et al. (2021) set out to predict the risk of discrimination against
vulnerable groups from their underrepresentation in the data. Their work is
highly influential for ours; it represents a first attempt at developing mech-
anisms to detect (a single type of) data bias and connect it with model
fairness, opening the way to follow-up studies (Mecati et al., 2022, 2023).
Our manuscript continues this line of work, with important differences in
methodology and conclusions. First, we consider three types of data bias,
adding label bias and proxies to underrepresentation and studying their joint
influence on fairness. Second, we assess model fairness on unbiased test sets.
For example, to measure the effect of strong under-representation, we re-
move from the training set a large percentage of items from the disadvan-
taged group (even 100%), but we retain them in the test set for a reliable
evaluation. Third, we conclude that underrepresentation in training sets is
overemphasized in the algorithmic fairness literature and that other data
biases can be more critical.

2.3. Quantitative data documentation

Data documentation is increasingly recognized as a central component of
trustworthy AI (Gebru et al., 2021; Holland et al., 2020; Pushkarna et al.,
2022; Fabris et al., 2022; Königstorfer and Thalmann, 2022; Rondina et al.,
2023; Golpayegani et al., 2024; Sambasivan et al., 2021). With few excep-
tions, prominent data documentation frameworks are qualitative. Among
quantitative frameworks, Holland et al. (2020) emphasize the analysis of cor-
relations between variables to spot anomalous trends. Dominguez-Catena
et al. (2024) develop metrics to quantify representational and stereotypical
biases, demonstrating them on a facial expression recognition dataset. In this
work, we propose a principled suite of measures to quantify and document
biases associated with algorithmic discrimination. We then outline how these
can be composed into a preliminary construct, the Data Bias Profile (DBP),
to support structured documentation and analysis. Our approach is tailored
to one specific aspect of datasets and differs from existing methods , both
quantitative and qualitative.
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3. Data Bias

Data is a fundamental driver of algorithmic discrimination (Mehrabi et al.,
2022; Suresh and Guttag, 2021; Schwartz et al., 2022). Data biases are de-
fined as data properties that, if unaddressed, lead to AI systems that perform
better or worse for different groups (ISO, 2021). In this section, we describe
three types of data bias widely recognized for their impact on algorithmic
fairness along with corresponding bias injection mechanisms.

3.1. Underrepresentation

The term representativeness typically refers to the ability of a dataset
to support the development of an accurate model for a target population.
Underrepresentation of disadvantaged groups in data is described at length
in popular media (Perez, 2019; Cobham, 2020) and seminal fairness articles
(Shankar et al., 2017; Buolamwini and Gebru, 2018; Mehrabi et al., 2022)
as a key driver of algorithmic discrimination. When groups from the target
population are underrepresented in training data, it is argued, AI models
will fail to generalize and underperform for those groups (Suresh and Guttag,
2021). Indeed, the (under)representation of protected groups in training sets
is studied as a predictor of model unfairness (Vetrò et al., 2021; Brzezinski
et al., 2024). Influential legislation and standards recognize representation
as a central component of algorithmic anti-discrimination (Parliament, 2024;
Schwartz et al., 2022) and mandate efforts to document and curb it.

3.2. Label bias

Labels (or target variables) are key to AI. They give machine learning a
“ground truth” that models learn to replicate. Since data is a social mir-
ror, labels reflect undesirable disparities in society (Barocas et al., 2023).
Indeed, measurement methods can be biased across protected groups (Var-
dasbi et al., 2024). Policing and arrest tend to target poorer neighborhoods,
therefore biasing crime data against black US citizens (Bao et al., 2021).
Medical data suffers from underdiagnosis due to substandard medical care
(Gianfrancesco et al., 2018) and barriers to access for vulnerable populations
(Obermeyer et al., 2019). Semi-automated labels are especially likely to
compound and reinforce spurious biases in training datasets (Jigsaw, 2018).
Several methods have been proposed in the literature to counteract unfair
label biases under simplifying assumptions (Kamiran and Calders, 2011; Feld-
man et al., 2015; Wang et al., 2021; Liu et al., 2024). Overall, measurement
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bias is inevitable (Jacobs and Wallach, 2021); it is especially problematic
for anti-discrimination when it tilts target labels against a vulnerable group
(Mehrabi et al., 2022; Suresh and Guttag, 2021). Models trained to predict
these labels will encode the underlying biases and harm disadvantaged groups
(Obermeyer et al., 2019; Bao et al., 2021).

3.3. Proxies

Proxies are features that correlate with protected attributes. Protected
attributes such as gender can be revealed by individual features, such as
names in a resume (Santamaŕıa and Mihaljevic, 2018), or by combinations
of features, such as the browsing history of a person (Hu et al., 2007). Pur-
suing fairness by simply removing protected attributes from input features,
an approach termed fairness through unawareness, is ineffective precisely for
this reason: a redundant encoding of latent protected variables is present
in other features (Hardt et al., 2016; Pedreschi et al., 2008; Barocas and
Selbst, 2016). Proxy removal, for example through feature selection or pro-
jection, is a popular approach to improve algorithmic fairness (Madras et al.,
2018; Edwards and Storkey, 2016; Alves et al., 2021; HireVue, 2022; Blind
Stairs). Conversely, input features that are strongly correlated with pro-
tected attributes are considered a driver of unfairness in data-driven models
(Schwartz et al., 2022). Policymakers may therefore expect practitioners to
actively identify and eliminate strong proxy features from models powering
automated decisions (Bogen, 2024).
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Table 1: Notation. Main notational convention adopted in this work.

symbol meaning
s ∈ S protected attribute
s = d historically disadvantaged group
s = a historically advantaged group
y ∈ Y target variables
Y = {⊕,⊖} positive and negative target values
x ∈ X non-protected attributes
ŷ = g(x) estimation of y through classifier g(·)
σ =
{(xi, yi, si)}

a training set

Prσ(s = d) prevalence of d in set σ
σd = {i ∈
σ|si = d}

subset of σ with all data points from
group d

σ′, y′ training set and target labels after bias
injection

r ∈ (0, 1) percentage of disadvantaged instances
retained for training: Prσ′(s = d) =
r · Prσ(s = d)

u = r − 1 underrepresentation factor
f ∈ (0, 1) flip factor or label bias: f = Pr(y′i =

⊖|yi = ⊕, si = d)

3.4. Data bias injection

Notation. Table 1 summarizes the notational conventions. We let s ∈
S denote a sensitive attribute,1 with value s = a (s = d) denoting the
historically (dis)advantaged group. We let y indicate the target variable
with values in Y = {⊕,⊖} and we let x ∈ X denote the non-protected
features used for classification. Target variables are estimated through a
classifier ŷ = g(x). We let σ = {(xi, yi, si)} denote a sample and Prσ(s = d)
indicate the prevalence of items with si = d in that sample. To inject biases
in training sets, we subsample the disadvantaged group and flip its labels.
We use σ′ to denote a training set derived from σ via bias injection.

Underrepresentation. We let r ∈ (0, 1) denote the percentage of in-

1We use the nomenclature sensitive and protected attribute interchangeably.
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stances from the disadvantaged group retained for training, so that

Pr
σ′
(s = d) = r · Pr

σ
(s = d)

u = r − 1. (1)

We call u = 1−r the underrepresentation factor for the disadvantaged group.
We vary u across its full range; extreme values u = 1 and u = 0 denote
complete underrepresentation and no underrepresentation, respectively.

Label bias. For label bias, we selectively flip labels. We let f ∈ (0, 1)
indicate the proportion of positive instances (y = ⊕) from the vulnerable
group whose label is flipped to negative (y = ⊖), i.e.

f = Pr(y′i = ⊖|yi = ⊕, si = d). (2)

We let the flip factor f vary between f = 0 and f = 1; the former corresponds
to no bias injection, the latter to maximum bias where all the positive items
from the disadvantaged group in the training set are flipped to a negative
target label.

Proxies. We quantify the strength of proxies as their joint ability to
predict sensitive attributes. We train a classifier ŝ = h(x) to estimate the
protected attribute s and we compute its AUC to measure the strength of
proxies.

ŝ = h(x)

sAUC = AUC(h). (3)

We term sAUC the proxy factor and propose two mechanisms to vary it.
An additive protocol adds to the non-sensitive variables X a new feature
correlated with sensitive variables

xnew = s+ v, v ∼ N (0, std2)

X ′ = X × Xnew, (4)

where v is a normal random variable with zero mean and std2 variance; we
increase the strength of proxies by reducing std. In addition, we consider a
subtractive protocol, iteratively removing from the non-sensitive variables X
the strongest predictors of the sensitive attribute

xdrop = max
x

sim(x, s)

X ′ = X \ Xdrop, (5)
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where sim(·, ·) denotes a similarity function (e.g. correlation) and X \ Xdrop

is the feature space obtained removing xdrop from the original feature set.2

4. Effect of Data Bias

In this section, we investigate the effect of data biases. We inject data bias
into the training and validation datasets of classification models and assess
their combined influence on algorithmic discrimination, evaluating fairness
metrics on unbiased test sets.

4.1. Overall setup

Table 2: Dataset basics. We report dataset name, sensitive attribute information such
as (dis)advantaged groups and their prevalence, and target variables information such as
positive classes and their prevalence among members of the advantaged and disadvantaged
groups.

Dataset s a d y y = ⊕ Prσ(s = a) Prσ(y = ⊕
| s = a)

Prσ(y = ⊕
| s = d)

Gender Male Female 0.68 0.3125 0.1136
Adult

Marital
status

Married Not
mar-
ried/
Di-
vorced

income > 50K
0.48 0.4451 0.0668

Compas Ethnicity Caucasian African-
American

recidivism no reof-
fense

0.60 0.6091 0.4769

Crime Ethnicity Caucasian Other violent
crime
rate

low 0.58 0.7335 0.1805

Folktables Ethnicity Caucasian Other employment employed 0.89 0.5688 0.5048

German Age > 25 y <= 25
y

credit
risk

good 0.81 0.7284 0.5789

NIH Gender Male Female chest
patholo-
gies

presence
of
pathol-
ogy

0.54 0.4112 0.3981

Fitzpatrick17k Skin
type

Light Dark skin
condi-
tions

presence
of condi-
tion

0.86 0.2826 0.1897

Datasets. We consider five tabular and two medical imaging datasets,
described in Table 2. These datasets are popular in the fairness literature and
span several domains where fairness work is critical. Datasets contain infor-
mation on protected attributes including gender, age, ethnicity, and marital
status. Table 2 additionally reports the target variable of each dataset, the

2Equation (5) is a single iteration of the subtractive protocol.
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prevalence of the disadvantaged and the advantaged groups, as well as the
prevalence of positive items in each group. The advantaged group has a
higher rate of positive samples compared to the disadvantaged group. No-
tice that the positive class indicates more desirable outcomes for the assessed
individuals, insofar as it is associated with critical resource allocation (loans,
medical attention) or lower penalties (incarceration, strict policing). This
makes high true positive rates unambiguously important to counter unde-
sirable patterns harming disadvantaged groups, such as underallocation and
overcriminalization. More details on each dataset are reported in Appendix
A.

Models. We train deep learning models for medical imaging datasets
and traditional machine learning models for tabular data. Models optimize
accuracy-oriented loss functions without any fairness-enhancing component.
For each of the tabular datasets, we train a random forest (RF), a support
vector classifier (SVC), and a linear regression (LR). Following the litera-
ture, we train a Densenet121 on NIH and a vgg16 model on Fitzpatrick17k
(Seyyed-Kalantari et al., 2020; Groh et al., 2021).

Splits & repetitions. We process tabular datasets with an 80-10-10
train-validation-test split. For NIH, we follow the literature with an 80-10-10
train-validation-test split (Seyyed-Kalantari et al., 2020). For Fitzpatrick17k,
we use a 70-15-15 split to ensure sufficient representation of the disadvantaged
group in the test set, favoring more stable fairness measurements. After
splitting the data, we inject biases in the training and validation set. We
keep the test set unbiased for a reliable evaluation.3 For each experiment, we
perform 10 training repetitions (with different initial seeds), reporting the
mean and standard deviation for metrics of interest.

Performance Metrics. To evaluate the classification performance of
each model across (often imbalanced) datasets, we consider the balanced
accuracy on the test set, i.e. the average between the true positive rate and
the true negative rate:

BAσ =
Prσ(ŷ = ⊕ | y = ⊕) + Prσ(ŷ = ⊖ | y = ⊖)

2
. (6)

3We use the term unbiased in a narrow sense, to denote simple random samples of the
original dataset, as opposed to subsets where we deliberately inject different types of data
bias.
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Fairness Metrics. To assess the model fairness, we consider three com-
plementary metrics: demographic parity, equal opportunity, and predictive
quality parity. Demographic parity (DP), also called independence (Barocas
et al., 2023), and instantiated as a mean difference (Zliobaite, 2017), is de-
fined as the difference between the acceptance rates computed on different
groups

DPσ = Prσ(ŷ = ⊕ | s = a)− Prσ(ŷ = ⊕ | s = d) (7)

and it is independent of the ground truth labels. It is especially salient in
contexts where reliable ground truth information is hard to obtain and a
positive outcome is desirable, including employment, credit, and criminal
justice (Du et al., 2021; Gajane and Pechenizkiy, 2018).

Contrary to DP, the equal opportunity (EO) metric is based on the target
variable y (Hardt et al., 2016); it is defined as the difference in the true
positive rates:

EOσ = Prσ(ŷ = ⊕ | s = a, y = ⊕)− Prσ(ŷ = ⊕ | s = d, y = ⊕). (8)

EO is especially important in contexts, such as healthcare, where a ground
truth of reasonable accuracy is available and false negatives (missed diagno-
sis) are especially harmful.

A third anti-discrimination criterion, focused on both types of misclassi-
fication, is represented by prediction quality parity (PQP) (Du et al., 2021).
We define it as the difference in balanced accuracy between sensitive groups:

PQPσ = BAσa − BAσd
. (9)

In the experiments below, we measure algorithmic fairness according to these
metrics as we inject controlled biases the training sets. We present results
for logistic regression (on tabular datasets) and equal opportunity, which are
representative of broader trends across all models and metrics. The results
for the remaining models and metrics can be found in Appendix B; unless
explicitly stated, they are equivalent to those illustrated below.

4.2. Underrepresentation

Setup. To study the effect of underrepresentation, we train models in
four different settings, varying the underrepresentation factor by undersam-
pling the disadvantaged group. We consider the unbiased case (u = 0), the
fully biased case (u = 1), where the disadvantaged group is completely absent
from the training set, and two intermediate settings (u = 0.2, u = 0.8).
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Table 3: Model fairness is mostly unaffected by underrepresentation in the
training set. Equal Opportunity (EO), varying the underrepresentation of the minority
group in the training set from u = 0 (no bias) to u = 1 (maximum bias). Mean and
standard deviation over 10 repetitions. Symbols (*) and (**) denote statistically significant
differences with respect to u = 0 at p = 0.05 and p = 0.01, respectively, measured with an
unpaired t-test.

EO

Dataset sensitive model u = 0 u = 0.2 u = 0.8 u = 1

(no bias) (max bias)

gender LR 0.08 ± 0.02 0.09 ± 0.02 0.09 ± 0.02 0.21 ± 0.07**
Adult

marital-status LR 0.36 ± 0.03 0.36 ± 0.03 0.37 ± 0.03 0.29 ± 0.04**

Compas race LR 0.17 ± 0.03 0.17 ± 0.03 0.16 ± 0.02 0.16 ± 0.02

Crime race LR 0.33 ± 0.11 0.36 ± 0.12 0.30 ± 0.14 0.28 ± 0.13

Folktables race LR 0.05 ± 0.04 0.05 ± 0.04 0.05 ± 0.04 0.05 ± 0.04

German age LR 0.07 ± 0.13 0.06 ± 0.11 0.07 ± 0.09 0.06 ± 0.07

NIH gender DenseNet 0.01 ± 0.02 0.04 ± 0.01** 0.03 ± 0.02 0.06 ± 0.02**

Fitzpatrick17k skin type vgg16 0.09 ± 0.02 0.11 ± 0.02 0.11 ± 0.02 0.11 ± 0.02

0 (no bias) 0.20 0.80 1 (max bias)
u

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Folktables

s = a
s = d

0 (no bias) 0.20 0.80 1 (max bias)
u

NIH

Figure 1: Large underrepresentation induces minor variations in the True pos-
itive rates (TPR) of both groups. Boxplots represent the TPR of the advantaged
(s = a) and disadvantaged group (s = d), as u varies.
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Results. Remarkably, Table 3 shows that the underrepresentation of the
minority group does not have a strong impact on fairness: EO is approxi-
mately constant as u varies in all datasets. The only datasets for which the
increase in disparity is statistically significant are NIH and Adult (gender).
For Crime and Adult (marital status), the gap even decreases slightly when
the disadvantaged group is removed from the training set.

This trend is surprising and contradicts popular narratives about the ef-
fect of underrepresentation on algorithmic fairness. To further analyze these
results, we split EO into its groupwise TPR components (Equation 8). Figure
1 reports boxplots of the TPR for the advantaged and disadvantaged groups
in NIH and Folktables, which are representative of the remaining datasets.
Figure 1 shows that the TPR remains approximately stable as underrepresen-
tation u varies maximally. Specifically, the TPR for both the advantaged and
disadvantaged groups in Folktables are perfectly stable, while they slightly
decrease for NIH. The decrease is more marked for the disadvantaged group,
leading to a small increase in EO. Underrepresentation is more impactful for
NIH since nearly half of the original training set consists of points from the
disadvantaged group (Table 2).

Interpretation. This notable result contradicts the position commonly
held in algorithmic fairness that increasing the representation of disadvan-
taged groups in training sets is critical for equitable outcomes. We defer a
broader interpretation of this result to Section 6, where we discuss our find-
ings in the broader context of algorithmic fairness research and practice. For
now, we highlight this as an indication that underrepresentation in training
sets is overemphasized and that other biases may be stronger drivers of model
unfairness.

4.3. Label bias

Setup. In this section, we train models on data affected by different
degrees of label bias. Specifically, we take a portion (f) of positive samples
from the disadvantaged group in the training set and flip their labels to neg-
ative. We let the flip factor (Equation 2) take values f = 0 (no bias), f = 0.2
(moderate bias), f = 0.8 (strong bias), and f = 1 (maximum bias). Addi-
tionally, we study the interplay between label bias and underrepresentation
by analyzing a scenario in which the prevalence of the disadvantaged group
is decreased and part of its positives are flipped. More in detail, at the end of
this section, we assess the joint effect of a weak label bias (f ∈ {0, 0.2}) and
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widely-ranging underrepresentation (u ∈ {0, 1}). We report the mean and
standard deviation of EO across ten repetitions. As in the previous section,
we focus on LR, while results for other models are available in Appendix B
along with additional fairness measures.

Table 4: Model fairness is strongly affected by label bias. Equal Opportunity
(EO), as the percentage of flipped positives in the disadvantaged group varies from f = 0
(no bias) to f = 1 (maximum bias). Mean and standard deviation over 10 repetitions.
Symbols (*) and (**) denote statistically significant differences with respect to f = 0 at
p = 0.05 and p = 0.01, respectively, measured with an unpaired t-test.

EO

Dataset sensitive model f = 0 f = 0.2 f = 0.8 f = 1

(no bias) (max bias)

gender LR 0.08 ± 0.02 0.21 ± 0.02** 0.52 ± 0.03** 0.55 ± 0.02**
Adult

marital-status LR 0.36 ± 0.03 0.43 ± 0.04** 0.62 ± 0.02** 0.63 ± 0.02**

Compas race LR 0.17 ± 0.03 0.21 ± 0.05 0.21 ± 0.05 0.15 ± 0.05

Crime race LR 0.33 ± 0.11 0.39 ± 0.11 0.62 ± 0.17** 0.67 ± 0.15**

Folktables race LR 0.05 ± 0.04 0.05 ± 0.04 0.08 ± 0.04 0.09 ± 0.04

German age LR 0.07 ± 0.13 0.10 ± 0.14 0.22 ± 0.16 0.25 ± 0.10**

NIH gender DenseNet 0.01 ± 0.02 0.09 ± 0.02** 0.40 ± 0.03** 0.48 ± 0.01**

Fitzpatrick17k skin type vgg16 0.09 ± 0.05 0.16 ± 0.06* 0.21 ± 0.08** 0.28 ± 0.02**

Results. Table 4 shows that label bias has a large impact on fairness,
sizably stronger than underrepresentation (Table 3). Indeed, across all ex-
periments, unfairness grows as f increases. In datasets like NIH and Adult,
this increase is very sizable, while for others such as Folktables it is more
contained. Tables B.15, B.18, and B.19 in Appendix C show a large incre-
ment in unfairness across the remaining metrics (PQP and DP) and models
(random forests and SVC).

Zooming in on this result, Figure 2 depicts the TPR for both sensitive
groups on Folktables and NIH. We observe that label bias has a significant
impact on the TPR of the disadvantaged group in both datasets, a trend
observed consistently across all considered datasets. On the other hand, the
impact on the TPR of the advantaged group differs between datasets. Figure
2 shows a relatively stable TPR for NIH, while, for Folktables, the TPR of
the advantaged group decreases with f . Results for the remaining datasets
are reported in Tables B.17 and B.16 in the appendix.

Broadly speaking, we distinguish two categories of datasets based on the
effect of f on the TPR of the advantaged group. Datasets such as Adult,
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Figure 2: Label bias induces sizable variations in groupwise true positive rates
(TPR); the disadvantaged group is especially affected. Boxplots representing the
TPR on the advantaged and disadvantaged group (y axis), as the percentage of disad-
vataged group items with flipped labels increases in the training set (x axis).

Crime, Fitzpatrick17k, and NIH exhibit stable values for the TPR of the ad-
vantaged group while the TPR of the disadvantaged group decreases, there-
fore widening the gap. Conversely, datasets like German and Compas show
patterns akin to Folktables, resulting in a less pronounced TPR gap. This
diverging behavior is explained in Section 4.4.

On the joint effect of label bias and underrepresentation. Table 4
suggests that even a weak label bias can have a sizable impact on model fair-
ness. We therefore study the joint effect of a weak label bias (f ∈ {0, 0.2})
and widely-ranging underrepresentation (u ∈ {0, 1}). Specifically, Table 5
summarizes the impact of excluding the disadvantaged group from the train-
ing set by presenting the difference between fairness under maximum under-
representation (EOu=1) and no underrepresentation (EOu=0):

∆EO = EOu=1 − EOu=0.

Positive values of ∆EO indicate that the inclusion of the disadvantaged group
in the training set (u = 0) leads to a decrease in the EO metric and, therefore,
a relative improvement in their TPR. We quantify this improvement under
no label bias (f = 0) and weak label bias (f = 0.2). As discussed in sec-
tion 4.2, underrepresentation of the disadvantaged group in the training set
(without label bias) has no clear effect on fairness, as confirmed by the first
column of Table 4 (f = 0) displaying both positive and negative values. On
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Table 5: In the presence of weak label noise, it becomes preferable to omit the
disadvantaged group from the training set. The table below illustrates the Equal
Opportunity difference (∆EO) between no representation and full representation for the
disadvantaged group across two scenarios: one without label noise (f = 0) and one with
weak label noise (f = 0.2). Positive (negative) values indicate a relative improvement
(decline) in the TPR of the disadvantaged group.

∆EO

Dataset sensitive model f = 0 f = 0.2

gender LR 0.13 ± 0.07 -0.01 ± 0.08
Adult

marital-status LR -0.07 ± 0.05 -0.13 ± 0.06

Compas race LR 0.01 ± 0.01 0.02 ± 0.04

Crime race LR -0.05 ± 0.17 -0.11 ± 0.17

Folktables race LR 0.00 ± 0.06 -0.01 ± 0.06

German age LR -0.01 ± 0.15 -0.09 ± 0.17

NIH gender DenseNet 0.05 ± 0.03 0.03 ± 0.03

Fitzpatrick17k skin type vgg16 0.02 ± 0.07 -0.05 ± 0.08

the other hand, the second column (f = 0.2) consistently displays negative
values (with the exception of NIH and Compas). This means that, in the
presence of relatively weak label bias, it may become preferable for the dis-
advantaged group to be completely omitted from the training set. Increasing
the representation of the disadvantaged group in the training set under these
conditions is not only unbeneficial but can, in some cases, be detrimental.

Interpretation. The results presented in this section underscore the
critical importance of precise and well-curated ground truth labels in datasets
used for training classification models. Specifically, if the labels associated
with one demographic group contain noise due to structural discrimination,
this can significantly impact model fairness, thereby exacerbating existing
biases. Our findings indicate that model performance for the disadvantaged
group is consistently and substantially affected when the input labels for
this group are subject to systematic bias. Conversely, label bias against the
disadvantaged group has a weaker impact on the advantaged group, especially
when proxies are strong (see Section 4.4); this discrepancy invariably leads
to a fairness decline. Furthermore, we showed that even a small proportion
of flipped labels can negatively affect the TPR gap. Overall, this shows that
hastily adding disadvantaged groups into training sets without careful label
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Table 6: The datasets most affected by label bias have strong proxies. Strength
of proxies for all datasets as measured by sAUC across 10 repetitions. We report sample
means and standard deviations. The datasets where label bias leads to high unfairness,
such as Adult, Crime and NIH (Table 4), have high sAUC values.

Dataset sensitive model sAUC

gender LR 0.9349 ± 0.0025
Adult

marital-status LR 0.9893 ± 0.0011

Compas race LR 0.6940 ± 0.0140

Crime race LR 0.9847 ± 0.0074

Folktables race LR 0.6821 ± 0.0112

German age LR 0.7939 ± 0.0382

NIH gender DenseNet 0.9979 ± 0.0013

Fitzpatrick17k skin type vgg16 0.8946 ± 0.0100

curation can cause more harm than good for the members of those groups.

4.4. Proxies

Setup. In this section, we study the effect of proxies on model fairness.
We train classifiers ŝ = h(x) to estimate the protected attribute s and we
compute their AUC to measure the strength of proxies (sAUC – Equation
3).4 To vary the strength of proxies, we leverage the subtractive protocol
introduced in Section 3.4 by iteratively removing the feature that is most cor-
related with the protected attribute; we train a new classifier on the reduced
input space and repeat this process until a random classifier performance is
reached. We study proxies in conjunction with label bias (f ∈ (0, 1)).

Results. Table 6 reports sAUC values for all datasets. Based on these
values, we distinguish two types of datasets with diverging properties. Datasets
like Adult (gender), Adult (marital-status), Crime, and NIH have very strong
proxies for sensitive attributes (sAUC > 0.9), while Compas and Folktables
have weaker proxies (sAUC < 0.7), indicating less information on sensitive
attributes encoded in non-sensitive ones. This division mirrors Table 4, where
the four high-proxy datasets have the worst (highest) values for EO under
maximum label bias (f = 1) and three out of four — i.e. Adult (gender),

4h(x) takes as input the same features x we used to train g(x).
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Figure 3: Proxies exacerbate the risk of algorithmic discrimination caused by
label bias. EO (y axis) increases with label bias f (x axis). This effect is mediated by
proxies: weaker proxies (lower sAUC) correspond to a lower slope and a weaker effect of
label bias on fairness.

Adult (marital-status), and NIH — already show statistically significant dif-
ferences under low flip factors (f = 0.2). Conversely, the negative effects of
label bias are weaker for low-proxy datasets: both Folktables and Compas
have no significant differences in EO even under maximum label bias (f = 1).

To further investigate this trend, we jointly study label bias and proxies.
Figure 3 depicts EO for Adult (gender) and Folktables as the flip factor
f increases. Curves with different colors represent input spaces whose size
(number of features n) is iteratively reduced by one. For both datasets, the
impact of flips on EO (summarized by average curve slopes) decreases with
sAUC. The decrease is more marked for Adult since it has stronger proxies
and therefore starts from higher sAUC values, as reported in the legend.

Interpretation. These results prove that the presence of strong proxies
amplifies the risk of algorithmic discrimination, particularly under label bias;
when sAUC is large, the removal of correlated features can mitigate this risk
by reducing the model’s reliance on sensitive information. These findings
highlight the critical role of proxy strength in exacerbating label bias and
influencing the effectiveness of fairness interventions.

5. Bias Detection

In this section, we introduce mechanisms for bias detection. We evaluate
their ability to highlight the presence of a specific type of bias in the data.
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5.1. Methods

We propose three measures to detect the presence of each type of bias in
the data. It is worth noting that in the previous section, we used a biased
training set to train algorithms and an unbiased test set for their evaluation.
In this section, we take the perspective of practitioners looking to evalu-
ate their development dataset σ for biases without necessarily having access
to unbiased data sources. We therefore split σ into identically distributed
training and test sets.

Underrepresentation. We propose the Representation Difference (RD),
to measure the underrepresentation of the disadvantaged group.

RD(σ) =
|σa| − |σd|

|σ|
= Pr

σ
(s = a)− Pr

σ
(s = d) (10)

RD quantifies the difference between the prevalence of the advantaged and
disadvantaged groups. RD is a directional measure: positive (negative)
values indicate a larger proportion of individuals from the (dis)advantaged
group. A group s can be considered fairly represented in σ if RD(σ) is within
certain limits. For example, practitioners can pick a threshold based on the
prevalence of s = d in a target population.

Label Bias. We introduce two measures of systematic label noise against
the disadvantaged group. Specifically, we train a base classifier ŷ = g(x) and
evaluate AUC curves distinguishing between sensitive groups. We let pg(x)
denote the posterior probabilities obtained by the classifier and we define the
cross-dataset AUC of g(x) as

xAUCg(σ1, σ2) = Pr(pg(xi) > pg(xj)|yi = ⊕, yj = ⊖, i ∈ σ1, j ∈ σ2),

i.e. the probability that g(x) correctly ranks a positive item from σ1 higher
than a negative one from σ2.

Our first measure, initially introduced by Kallus and Zhou (2019), lever-
ages a partition of σ into a disadvantaged set σd and an advantaged set σa,
computes both measures of cross-dataset AUC, and defines their difference
as

∆xAUCσ = xAUC(σa, σd)− xAUC(σd, σa). (11)

Positive values indicate that pairs of advantaged positives and disadvantaged
negatives are easier to separate correctly than pairs of disadvantaged positives
and advantaged negatives.
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Next, we define the within-group AUC difference as

∆wAUCσ = AUCσa(g)− AUCσd
(g)

= Pr
σa

(pg(xi) > pg(xj) | yi = ⊕, yj = ⊖)

− Pr
σd

(pg(xi) > pg(xj) | yi = ⊕, yj = ⊖), (12)

i.e. we compute the AUC for advantaged (s = a) and disadvantaged
items (s = d) separately, and measure their difference. Large absolute values
indicate a better separability for one group. Notice that both Equations (11)
and (12) are directional: positive (negative) values indicate better separabil-
ity for the (dis)advantaged group. Finally, we compute Separation Difference
(SD) as their average

SD(σ) =
∆xAUCσ +∆wAUCσ

2
(13)

and employ it in the remainder of this section. We expect label bias to worsen
the separability for the disadvantaged group and therefore yield high values
of SD.

Proxies. To quantify the information about protected features encoded
in non-protected ones, which may act as proxies, we train a classifier h(·) :
x → s to predict sensitive attributes from non-sensitive ones. The classifier’s
performance is then evaluated using the area under the ROC curve for the s
predictor (sAUC).

sAUC(σ) = AUCσ(h) (14)

Higher values of this metric indicate a better ability of the classifier to predict
the sensitive feature from the non-sensitive one, indicating stronger proxies.

5.2. Experiments

Setup. We leverage bias injection mechanisms to test bias detection.
We use part of σ to train a classifier and part of σ to evaluate its per-
formance. We maintain an 80-10-10 train-validation-test split for tabular
datasets and NIH and a 70-15-15 split for Fitzpatrick17k. As in Section
4, we subsample the disadvantaged group by varying the underrepresenta-
tion factor u ∈ {0, 0.2, 0.8, 1}. Similarly, we inject label bias letting the flip
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factor vary in f ∈ {0, 0.2, 0.8, 1}.5 Finally, we inject proxies through the
additive mechanism presented in Section 3.4. We expand the input space
with an additional feature derived as the sum of the sensitive attribute s
and a normal variable with zero mean and decreasing standard deviation.6

The standard deviation varies to achieve Pearson correlation coefficients be-
tween the sensitive attribute and the additional feature of approximately
{0, 0.25, 0.50, 0.75, 1}. A correlation of 0 corresponds to the baseline scenario
with no additional feature, while a correlation of 1 reflects the maximally
biased scenario in which the additional feature is identical to the protected
attribute.

Results. In Figure 4, we present bias detection results for Folktables and
NIH. Experimental results for the other datasets are provided in Appendix
C. As anticipated, each bias detection metric specifically captures the type
of bias it is designed to identify. The metrics exhibit strong variation in
the diagonal panels of Figure 4, while remaining relatively stable across the
remaining panels.

Specifically, underrepresentation is suitably captured by RD increasing
linearly in the first column, while SD and sAUC exhibit minor oscillations in
their average values. Notice that extreme underrepresentation leads to large
variations around mean values for SD and sAUC due to numerical instability
(see Footnote 5). In the second column, label bias leads to an increase in SD,
while RD and sAUC remain constant. Finally, proxies of increasing strength
are detected by sAUC in the third column, while RD and SD remain stable.
These trends are consistent across nearly all datasets, except for the SD
metric on Compas, whose increase with f is barely noticeable. Overall, these
results show the effectiveness of the proposed measures in detecting specific
data biases.

5Since extreme values such as u = 1 and f = 1 would render computation of SD and
sAUC infeasible, we replace them with u = 0.95 and f = 0.95. It is worth reiterating that,
in this section, training sets and test sets are drawn from the same distribution, differently
from the previous section, where test sets were unbiased.

6For image datasets, the additional proxy is fed to the penultimate layer of the neural
network.
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Figure 4: The proposed measures capture specific types of bias. Bias detection on
Folktables and NIH. Columns correspond to three bias injection mechanisms; rows corre-
spond to bias detection measures. Measures vary when the corresponding bias increases
(diagonal) and remain relatively flat with other biases (off-diagonal).

Interpretation. After confirming the influence of data bias on algo-
rithmic fairness in the previous section, in this section, we have provided a
demonstration of bias detection based on principled measures. Each measure
can detect a specific type of data bias. Crucially, their computation requires
no access to unbiased test sets, making them widely applicable in practice.

5.3. Data Bias Profile

Based on these measures, we initiate the development of Data Bias Pro-
files (DBP), an extensible quantitative framework to describe data bias. We
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Figure 5: Data Bias Profiles hint at the risk of algorithmic discrimination and
effectiveness of fairness intervention. DBP of Adult (left) and Folktables (center);
on the right, model fairness summarized by demographic parity (x axis) and equality of
opportunity (y). DBP highlights strong proxies and label bias for Adult (marital status),
leading to a high risk of discrimination (red round marker), which can be mitigated with
proxy reduction (star-shaped marker). Folktables has weak proxies and label bias, trans-
lating into lower unfairness and ineffectiveness of proxy mitigation (blue markers).

envision that the DBP will be used in fairness work to highlight biases that
can lead to discrimination and inform decisions on fairness-enhancing inter-
ventions. Additionally, DBP is suited to summarize biases in the documenta-
tion accompanying a dataset. We position this as an initial but foundational
contribution—significant work remains to validate, refine, and extend the
DBP into a mature, fully realized tool. Achieving this vision will require a
coordinated effort across the research community to evolve the DBP into a
robust and widely adopted quantitative framework.

Figure 5 demonstrates DBP with a practical use case. On the left, we
present DBPs for two datasets. Adult (marital-status) presents considerable
label bias and strong proxies. As shown in Section 4, this entails a high
probability of algorithmic discrimination. Folktables, on the other hand, has
low label bias and weak proxies, highlighting a contained risk of algorithmic
discrimination. This is confirmed by the right panel in Figure 5, where round
markers depict the average unfairness (DP and EO – Equations 7 and 8) for
a logistic regression model over ten random splits of the datasets. DBPs
also hint at the effectiveness of proxy reduction as a bias mitigation strategy.
Tackling the strong proxies in Adult can largely reduce unfairness; Folktables,
on the other hand, displays weak proxies and is unlikely to benefit from the
same approach. We test this hypothesis by removing from each dataset the
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Table 7: Implications. Takeaways and recommendations for algorithmic fairness re-
searchers (R) and practitioners (P).

Takeaway Recommendations

Underrepresentation in training is overem-
phasized

(R) Critically reconsider widespread belief
(P) Use scarce annotated data for reliable evaluations

Label bias is critical (R) Research techniques for label bias detection
(P) Seek and evaluate multiple target labels

Data Bias Profiles (DBP) can link fairness
& bias

(R) Diversify DBP in fairness testbeds
(P) Use DBP to select fairness interventions
(P) Include DBP in data documentation

feature that is most strongly correlated with the sensitive attribute. Star-
shaped markers depict EO and DP for the resulting models in the right panel
of Figure 5. As predicted, proxy removal strongly curbs unfairness on Adult
(marital-status), while its effect on Folktables is barely noticeable.

6. Discussion

We discuss our results in the broader context of responsible AI. Table 7
summarizes the implications of this work for researchers and practitioners.

Underrepresentation in training is overemphasized. Increasing the
prevalence of vulnerable groups in training sets is touted as the key strat-
egy to achieve fairness. In stark contradiction with this credence, Section 4
shows that extreme variations in the prevalence of protected groups have a
minor impact on fairness across diverse datasets, machine learning models,
and metric choices. First and foremost, we urge practitioners and researchers
against using these results as a blanket justification to neglect inclusion ef-
forts. Although challenging, expanding and diversifying datasets in a re-
sponsible manner is fundamental for keeping algorithmic systems in check.
We provide a more nuanced interpretation. High-quality data from disad-
vantaged groups annotated with sensitive attributes is likely to be scarce,
stemming e.g. from targeted curation efforts. Since including disadvantaged
groups in training sets is often unlikely to bring meaningful improvements, we
recommend prioritizing this data for reliable system evaluations (rather than
training), including measurements of algorithmic fairness. If fairness evalua-
tions yield problematic results, practitioners should carry out an assessment
of multiple bias factors that go beyond underrepresentation.
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Label bias is critical. Systematic bias against vulnerable groups in tar-
get variables (in short: label bias) is a common occurrence due to structural
societal differences. Section 4 shows that label bias has a major impact on
fairness across diverse metrics, models, and datasets as well as significant in-
teractions with other types of data bias. For example, in the presence of label
bias, increasing training set representation can have a detrimental effect on
vulnerable groups. In this setting, underrepresentation may actually benefit
vulnerable groups, challenging conventional wisdom. Notice that label bias
is especially critical also because there is a high risk it will go undetected if
models are trained and evaluated with datasets that exhibit the same bias
(e.g. identically distributed training and test sets). Based on these findings,
we make two recommendations. Practitioners should seek multiple target
variables for their models and carefully choose the most suitable one(s) to
minimize the potential for label bias. This effort should blend qualitative
approaches grounded in domain expertise with quantitative approaches for
bias detection. In concert, researchers should develop reliable techniques for
label bias detection. Section 5 is a first step in this direction.

Data Bias Profiles (DBP) can link fairness and bias. Overall, this
work contributes a list of independent data biases with mechanisms to study
them (Section 3), a study of their joint influence on fairness (Section 4), and
principled methods for bias quantification (Section 5). Building upon these
contributions, we advocate a broader community effort to develop the Data
Bias Profile (DBP), as a first attempt to summarize key bias indicators in
a unified format . Rather than presenting a finalized framework, we offer
an extensible prototype. In their current form, DBPs are brief summaries of
datasets that leverage bias quantification methods for a principled analysis
of fairness problems guided by data. Model developers should use DBPs to
reason about sources of model unfairness and select tailored approaches for
mitigation. For example, detecting strong label bias may direct a developer
towards fairness interventions for target label repair. Additionally, DBPs
can develop into reference documentation frameworks that practitioners will
use to comply with data governance requirements, including bias detection
provisions specified in the AI Act. From a research standpoint, the DBP
offers promising directions. DBPs can guide the development of fairness
benchmarks, i.e. standardized collections to evaluate alternative fairness al-
gorithms. For example, datasets can be distinguished based on the presence
of strong proxies and weak proxies. As we have shown, both vanilla algo-
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rithms (solely focused on accuracy) and fairness interventions behave differ-
ently based on the strength of proxies encoded in non-sensitive features. Fair-
ness testbeds should thus include both strong-proxy and weak-proxy datasets
to evaluate models under diverse conditions. Finally, DBPs may bridge hun-
dreds of fairness algorithms (Hort et al., 2024) and datasets (Fabris et al.,
2022), by helping to answer the key question: given a model that produces
unfair predictions on a dataset, which type of fairness-enhancing algorithm
is most suitable for that type of data and algorithm?

Limitations

This study has some limitations. First, we only cover three types of data
bias. Although these are the most cited in scholarly articles and techni-
cal reports, different types of data bias are possible (Baumann et al., 2023;
Mehrabi et al., 2022). Future work should consider additional biases, includ-
ing feature bias, omitted variable bias, and concept drift across protected
groups. Second, we consider binary protected attributes. While most results
generalize to multi-group attributes by casting them as one-vs-all problems,
this may become impractical for large cardinality |S|. Natively catering to
multi-group attributes will require careful adaptation. Third, we provide no
thresholds to distinguish between mild and excessive bias with our detection
mechanisms. In its current form, the DBP is useful for relative compar-
isons across datasets; it will need further refinement to support thresholding.
Fourth, while we experiment with popular and diverse fairness datasets, this
is unlikely to be exhaustive of all settings encountered in practice. Future
work should include additional datasets, with special attention to datasets
with complementary properties. Finally, we note that it may be impossible
to distinguish proper data bias, i.e. a shift between the data and a target
population, from situations where the data is “uncorrupted”, yet naturally
encodes groupwise differences. Our work contributes a principled way to link
numerical data properties with algorithmic fairness properties. Arguments
on the source of those numerical properties are extremely valuable and com-
plement our contributions.

7. Conclusion

Data biases are key drivers of algorithmic discrimination. While this
fact is broadly recognized, their relative importance and interaction remain
understudied. Our work targets this gap with a systematic study of bias
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conducive factors, their influence on algorithmic discrimination, and their
detection through dedicated mechanisms. These are necessary steps to de-
velop a shared lexicon to describe data bias, document it unambiguously,
and link it to fairness interventions in a principled fashion. To realize these
goals, we call for a community-wide effort to expand, formalize, and critically
assess the Data Bias Profile, paving the way for a shared and trustworthy
approach to quantitative bias documentation.

This line of work will be critical to steer anti-discrimination policy to-
ward technically meaningful standards and to translate algorithmic fairness
research into law-abiding practice.
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Appendix A. Datasets

In this appendix, we present algorithmic fairness datasets and their pro-
cessing in this work. Sensitive features (s) that are used for fairness evalua-
tions are excluded from input features.

Adult7 is a prominent dataset hosted by the UCI Machine Learning
Repository, originally derived from the 1994 US Census database (Kohavi,
1996). The primary objective of this dataset is to predict whether an in-
dividual’s annual income exceeds $50,000. We follow Donini et al. (2018),
keeping all the features in the dataset. We use gender and marital-status as
sensitive attributes.

Compas8 comprises data from the COMPAS (Correctional Offender Man-
agement Profiling for Alternative Sanctions) algorithm, a commercial tool
used to predict recidivism among convicted individuals. The dataset, col-
lected by ProPublica to audit the COMPAS system, surfaced discrimination
against African-American defendants. We follow the preprocessing from Ru-
oss et al. (2020) and use the following variables.

• race (s): race of the defendants.

• age: age of the defendants.

• c charge degree: charge degree (F: Felony, M: Misdemeanor).

• diff custody: time spent in custody.

• diff jail: time spent in jail.

• sex: sex of the defendants.

• priors count: number of prior criminal records.

• length of stay: number of days spent in jail.

• v score text: COMPAS quantized score, summarizing additional fea-
tures used by the model but unavailable in the data collected by ProP-
ulica.

7https://archive.ics.uci.edu/dataset/2/adult
8https://github.com/propublica/compas-analysis
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The target variable is two year recid, indicating whether an individual re-
offended within 2 years of being released. For protected attributes, we focus
on race, distinguishing between Caucasian (advantaged group) and African-
American defendants (disadvantaged group).

Crime9 is a real-world dataset from the UCI Machine Learning Reposi-
tory, focused on predicting violent crime rates across various communities in
the US. The task involves predicting whether a community can be classified
as violent based on its crime rates, specifically when the number of crimes
exceeds the median value of crimes across all states. We follow the setup from
Balunovic et al. (2022), including binarized race as a sensitive attribute. We
keep all the non-sensitive features for inference (n = 127).

Folktables10 is a Python package designed to provide access to datasets
derived from the US Census Bureau’s American Community Survey (ACS)
(Ding et al., 2021). The complete data underlying the folktables dataset
comprises the full ACS census data, spanning all US states, multiple years,
and prediction targets. In this work, we focus on the employment prediction
task (ACSEmployment), filtering the data to include individuals aged be-
tween 16 and 90. We subsample at 1% of the dataset size, stratifying on the
target and sensitive label to maintain the distribution of the original data.
We use the standard data loader keeping the following features:

• ESR: employment status of the individual, represented as a binary
categorical feature (1: Employed, 0: Otherwise).

• RAC1P (s): detailed race recode (categorical values 1-9).

• AGEP: age in years, with a maximum value of 99.

• ANC: ancestry recode (categorical).

• CIT: citizenship status of the individual, represented as a categorical
string.

• DEAR: hearing difficulty (binary).

• DEYE: vision difficulty (binary).

9https://archive.ics.uci.edu/dataset/183/communities+and+crime
10https://github.com/socialfoundations/folktables
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• DIS: disability recode (1: citizen with disability, 2: without).

• DREM: cognitive difficulty of the individual, indicating if they have
difficulty remembering, concentrating, or making decisions (binary).

• ESP: employment status of parents (categorical)

• MAR: marital status of the individual (categorical).

• MIG: Mobility status, indicating residence one year ago (categorical).

• MIL: military service (categorical).

• NATIVITY: binary variable indicating US native or foreign-born.

• RELP: relationship (categorical values 1-17).

• SCHL: educational attainment (categorical values 1-24, or NA).

• SEX: sex/Gender (1: Male, 2: Female).

The Employment Status Recode (ESR) is the target variable (equal to 1 if
employed, 0 otherwise). The advantaged group consists of individuals with
RAC1P equal to 1 (Caucasian), while the disadvantaged group includes all
individuals with RAC1P values other than 1 (other races).

German11 is another widely recognized dataset from the UCI Machine
Learning Repository, encompassing records of bank loan applications in Ger-
many. This dataset contains demographic and financial details of applicants,
along with the loan approval outcomes. The primary prediction task is bi-
nary, aimed at determining creditworthiness based on loan repayment. We
use the following features:

• age (s): The age of the applicant, binarized with a 25-year threshold.

• amount: credit amount in Deutsche Mark.

• credit history: history of credit usage and repayment by the applicant
(categorical).

• duration: duration of the loan in months (numeric).

11https://archive.ics.uci.edu/dataset/522/south+german+credit
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• employment duration: tenure with current employer (numeric).

• housing: type of housing (categorical).

• installment rate: percentage of applicant’s income allocated to loan
installments (categorical).

• job: applicant’s job and employability (categorical).

• number credits: number of credits with this bank (categorical).

• other debtors: indication of an additional debtor or a guarantor for the
credit (categorical).

• other installment plans: installment plans with other banks (categori-
cal).

• people liable: number of people who are financially dependent on the
applicant (categorical).

• property: applicant’s most valuable property (categorical).

• purpose: purpose of loan (categorical).

• present residence: years lived at current address (categorical).

• savings: savings account balance (categorical).

• status: status of the individual’s saving accounts (categorical).

• telephone: whether the applicant has a registered telephone line.

ChestX-ray14 (NIH)12 is a comprehensive medical imaging dataset
containing 112,120 frontal-view chest X-ray images from 30,805 unique pa-
tients, collected between 1992 and 2015 (Wang et al., 2017). Disease labels
for fourteen common thoracic conditions were extracted from radiological re-
ports using natural language processing. The labeled conditions include: at-
electasis, cardiomegaly, consolidation, edema, effusion, emphysema, fibrosis,
hernia, infiltration, mas, nodule, pneumonia, pneumothorax. The associated
classification task is multi-label, with each of the 14 target labels indicating

12https://nihcc.app.box.com/v/ChestXray-NIHCC
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the presence of a specific disease. Additionally, patient metadata provides
information on both gender and age.

We include only one image per patient, as previous studies have shown
that this approach reduces bias without significantly affecting overall perfor-
mance (Weng et al., 2023). We conduct evaluations independently for each
disease and report macro-averaged metrics across all diseases. In this study,
binary gender is the sensitive attribute.

Fitzpatrick17k13 is a medical imaging dataset containing 16,577 clini-
cal images (Groh et al., 2021), each annotated with labels for skin conditions
and skin type based on the Fitzpatrick scale (Fitzpatrick, 1988). The images
were sourced from two open-access dermatology atlases: 12,672 images from
DermaAmin and 3,905 from Atlas Dermatologico.14 The dataset includes 114
distinct disease labels and two additional levels of aggregated skin condition
classifications, structured according to the skin lesion taxonomy proposed by
Esteva et al. (2017). At the broadest classification level, skin conditions are
divided into three main categories: benign lesions, malignant lesions and non-
neoplastic lesions. In a more detailed classification, skin conditions are cate-
gorized into nine types: inflammatory, malignant epidermal, genodermatoses,
benign dermal, benign epidermal, malignant melanoma, benign melanocyte,
malignant cutaneous lymphoma, malignant dermal. Our classification task
is based on a binary variable derived from the highest-level skin condition
classification, distinguishing between neoplastic, hence tumoral (either be-
nign or malignant), and non-neoplastic diseases. This mimics a preliminary
assessment for the presence of tumoral conditions through assistive technol-
ogy used by dermatology experts. The Fitzpatrick skin type labels follow a
six-point scale, with 1 being the lightest and 6 the darkest skin type. We
binarize them into light (1-4) and very dark (5-6).

Appendix B. Additional Results on the Effect of Data Bias

In this section, we report the effect of data bias on all machine learning
models, datasets, and metrics. Specifically, performance is evaluated through
balanced accuracy (Tables B.8 and B.14), while fairness is assessed through
prediction quality parity (PQP – Tables B.9 and B.15), equal opportunity
(EO – Tables B.12 and B.18), and demographic parity (DP – Tables B.13

13https://github.com/mattgroh/fitzpatrick17k
14https://atlasdermatologico.com.br
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and B.19). We zoom in on EO by breaking it down into into groupwise true
positive rate (TPR – Tables B.10, B.11, B.16, and B.17) components. We
provide results for underrepresentation (Appendix Appendix B.1) and label
bias (Appendix Appendix B.2).

As in Section 4, the tables include indicators of statistical significance;
symbols (*) and (**) denote statistically significant differences with respect
to the unbiased scenario thresholds at p = 0.05 and p = 0.01, respectively.

Appendix B.1. Underrepresentation

Table B.8: Balanced accuracy varying the percentage of minority-group points retained in
the training set from u = 0 (no bias) to u = 1 (maximum bias).

Balanced Accuracy

Dataset sensitive model u = 0 (no bias) u = 0.2 u = 0.8 u = 1 (max bias)

LR 0.77 ± 0.00 0.77 ± 0.00 0.77 ± 0.00 0.76 ± 0.01*

RF 0.78 ± 0.00 0.78 ± 0.01 0.78 ± 0.00 0.77 ± 0.01*gender

SVC 0.77 ± 0.01 0.77 ± 0.01 0.77 ± 0.01 0.76 ± 0.01

LR 0.77 ± 0.00 0.77 ± 0.00 0.77 ± 0.00 0.77 ± 0.00

RF 0.78 ± 0.00 0.78 ± 0.00 0.78 ± 0.00 0.78 ± 0.01

Adult

marital-status

SVC 0.77 ± 0.01 0.77 ± 0.01 0.77 ± 0.01 0.77 ± 0.01

LR 0.67 ± 0.02 0.67 ± 0.02 0.67 ± 0.01 0.67 ± 0.01

RF 0.69 ± 0.02 0.69 ± 0.01 0.69 ± 0.02 0.68 ± 0.02Compas race

SVC 0.65 ± 0.03 0.65 ± 0.03 0.65 ± 0.02 0.65 ± 0.01

LR 0.84 ± 0.02 0.84 ± 0.02 0.83 ± 0.02 0.83 ± 0.02

RF 0.83 ± 0.03 0.84 ± 0.03 0.83 ± 0.02 0.81 ± 0.03Crime race

SVC 0.84 ± 0.02 0.84 ± 0.02 0.83 ± 0.02 0.83 ± 0.03

LR 0.73 ± 0.01 0.73 ± 0.01 0.73 ± 0.01 0.73 ± 0.01

RF 0.78 ± 0.00 0.78 ± 0.01 0.77 ± 0.01* 0.78 ± 0.00Folktables race

SVC 0.72 ± 0.01 0.72 ± 0.01 0.72 ± 0.01 0.72 ± 0.01

LR 0.66 ± 0.06 0.65 ± 0.05 0.64 ± 0.07 0.65 ± 0.05

RF 0.68 ± 0.06 0.68 ± 0.05 0.65 ± 0.05 0.64 ± 0.05German age

SVC 0.66 ± 0.07 0.66 ± 0.07 0.63 ± 0.06 0.63 ± 0.06

NIH gender DenseNet 0.64 ± 0.01 0.64 ± 0.02 0.64 ± 0.02 0.63 ± 0.02

Fitzpatrick17k skin type vgg16 0.73 ± 0.01 0.70 ± 0.01** 0.73 ± 0.02 0.70 ± 0.02**
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Table B.9: Prediction quality parity (PQP) varying the percentage of minority-group
points retained in the training set from u = 0 (no bias) to u = 1 (maximum bias).

PQP

Dataset sensitive model u = 0 (no bias) u = 0.2 u = 0.8 u = 1 (max bias)

LR 0.00 ± 0.01 0.00 ± 0.01 0.01 ± 0.01 0.06 ± 0.03**

RF 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.11 ± 0.01**gender

SVC 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.08 ± 0.01**

LR 0.09 ± 0.01 0.09 ± 0.02 0.09 ± 0.02 0.06 ± 0.02**

RF 0.08 ± 0.01 0.08 ± 0.01 0.09 ± 0.01 0.02 ± 0.02**

Adult

marital-status

SVC 0.08 ± 0.02 0.09 ± 0.02 0.08 ± 0.02 0.06 ± 0.01*

LR -0.06 ± 0.03 -0.06 ± 0.03 -0.06 ± 0.04 -0.06 ± 0.04

RF -0.01 ± 0.05 -0.02 ± 0.06 -0.02 ± 0.05 -0.02 ± 0.04Compas race

SVC -0.05 ± 0.03 -0.05 ± 0.04 -0.06 ± 0.03 -0.06 ± 0.04

LR -0.02 ± 0.08 -0.01 ± 0.09 -0.04 ± 0.10 -0.06 ± 0.10

RF -0.03 ± 0.05 -0.04 ± 0.09 -0.04 ± 0.07 -0.08 ± 0.07Crime race

SVC -0.03 ± 0.08 0.01 ± 0.06 -0.05 ± 0.05 -0.06 ± 0.06

LR 0.01 ± 0.04 0.01 ± 0.04 0.02 ± 0.04 0.02 ± 0.04

RF 0.01 ± 0.03 0.00 ± 0.03 0.01 ± 0.03 0.01 ± 0.03Folktables race

SVC 0.02 ± 0.03 0.02 ± 0.03 0.02 ± 0.03 0.02 ± 0.03

LR 0.07 ± 0.13 0.05 ± 0.09 0.08 ± 0.08 0.08 ± 0.10

RF -0.01 ± 0.07 0.02 ± 0.07 0.06 ± 0.05 0.04 ± 0.06German age

SVC 0.03 ± 0.10 0.03 ± 0.08 0.02 ± 0.10 0.02 ± 0.09

NIH gender DenseNet -0.01 ± 0.01 0.00 ± 0.01 0.01 ± 0.01** 0.02 ± 0.01**

Fitzpatrick17k skin type vgg16 -0.01 ± 0.01 0.03 ± 0.01** 0.04 ± 0.02** 0.03 ± 0.03**
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Table B.10: True positive rate (TPR) of the advantaged group varying the percentage of
minority-group points retained in the training set from u = 0 (no bias) to u = 1 (maximum
bias).

TPR (s = a)

Dataset sensitive model u = 0 (no bias) u = 0.2 u = 0.8 u = 1 (max bias)

LR 0.61 ± 0.01 0.62 ± 0.01 0.62 ± 0.01 0.62 ± 0.01

RF 0.64 ± 0.01 0.63 ± 0.01 0.64 ± 0.01 0.63 ± 0.01gender

SVC 0.61 ± 0.01 0.61 ± 0.01 0.61 ± 0.01 0.61 ± 0.01

LR 0.65 ± 0.01 0.65 ± 0.01 0.65 ± 0.01 0.66 ± 0.01

RF 0.66 ± 0.01 0.66 ± 0.01 0.66 ± 0.01 0.67 ± 0.01

Adult

marital-status

SVC 0.64 ± 0.01 0.64 ± 0.01 0.65 ± 0.01 0.66 ± 0.01**

LR 0.85 ± 0.02 0.86 ± 0.01 0.87 ± 0.02 0.88 ± 0.02*

RF 0.81 ± 0.03 0.81 ± 0.03 0.81 ± 0.02 0.81 ± 0.03Compas race

SVC 0.85 ± 0.04 0.86 ± 0.05 0.91 ± 0.02** 0.92 ± 0.02**

LR 0.90 ± 0.04 0.90 ± 0.04 0.89 ± 0.04 0.91 ± 0.04

RF 0.90 ± 0.03 0.90 ± 0.03 0.91 ± 0.03 0.92 ± 0.03Crime race

SVC 0.91 ± 0.04 0.91 ± 0.03 0.91 ± 0.03 0.93 ± 0.03

LR 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01

RF 0.85 ± 0.01 0.86 ± 0.01 0.86 ± 0.01 0.86 ± 0.01Folktables race

SVC 0.85 ± 0.01 0.85 ± 0.01 0.85 ± 0.01 0.85 ± 0.01

LR 0.89 ± 0.05 0.89 ± 0.05 0.91 ± 0.05 0.91 ± 0.05

RF 0.93 ± 0.02 0.91 ± 0.04 0.93 ± 0.02 0.92 ± 0.06German age

SVC 0.93 ± 0.02 0.92 ± 0.02 0.93 ± 0.04 0.94 ± 0.04

NIH gender DenseNet 0.46 ± 0.03 0.49 ± 0.02 0.45 ± 0.05 0.45 ± 0.04

Fitzpatrick17k skin type vgg16 0.70 ± 0.02 0.68 ± 0.02 0.68 ± 0.01* 0.69 ± 0.01
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Table B.11: True positive rate (TPR) of the disadvantaged group varying the percentage
of minority-group points retained in the training set from u = 0 (no bias) to u = 1
(maximum bias).

TPR (s = d)

Dataset sensitive model u = 0 (no bias) u = 0.2 u = 0.8 u = 1 (max bias)

LR 0.53 ± 0.02 0.53 ± 0.02 0.53 ± 0.02 0.41 ± 0.07**

RF 0.54 ± 0.02 0.54 ± 0.02 0.52 ± 0.02 0.34 ± 0.03**gender

SVC 0.53 ± 0.02 0.53 ± 0.02 0.51 ± 0.03 0.36 ± 0.04**

LR 0.29 ± 0.03 0.29 ± 0.03 0.29 ± 0.03 0.37 ± 0.03**

RF 0.35 ± 0.03 0.34 ± 0.03 0.33 ± 0.02 0.51 ± 0.04**

Adult

marital-status

SVC 0.30 ± 0.03 0.30 ± 0.03 0.31 ± 0.03 0.39 ± 0.02**

LR 0.68 ± 0.03 0.68 ± 0.03 0.71 ± 0.03 0.72 ± 0.02**

RF 0.66 ± 0.03 0.67 ± 0.03 0.68 ± 0.04 0.70 ± 0.03**Compas race

SVC 0.68 ± 0.06 0.69 ± 0.07 0.76 ± 0.05* 0.78 ± 0.03**

LR 0.57 ± 0.10 0.54 ± 0.12 0.59 ± 0.14 0.63 ± 0.13

RF 0.57 ± 0.07 0.58 ± 0.10 0.62 ± 0.08 0.75 ± 0.09**Crime race

SVC 0.59 ± 0.08 0.55 ± 0.08 0.61 ± 0.07 0.63 ± 0.09

LR 0.79 ± 0.04 0.79 ± 0.04 0.78 ± 0.04 0.78 ± 0.05

RF 0.83 ± 0.03 0.84 ± 0.04 0.85 ± 0.03 0.84 ± 0.04Folktables race

SVC 0.80 ± 0.04 0.81 ± 0.04 0.81 ± 0.04 0.81 ± 0.03

LR 0.82 ± 0.13 0.82 ± 0.12 0.84 ± 0.10 0.85 ± 0.09

RF 0.90 ± 0.07 0.87 ± 0.07 0.90 ± 0.07 0.89 ± 0.07German age

SVC 0.87 ± 0.09 0.89 ± 0.09 0.92 ± 0.10 0.90 ± 0.11

NIH gender DenseNet 0.44 ± 0.05 0.45 ± 0.03 0.42 ± 0.04 0.39 ± 0.03*

Fitzpatrick17k skin type vgg16 0.61 ± 0.05 0.58 ± 0.06 0.57 ± 0.05 0.58 ± 0.05
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Table B.12: Equal opportunity (EO) varying the percentage of minority-group points
retained in the training set from u = 0 (no bias) to u = 1 (maximum bias).

EO

Dataset sensitive model u = 0 (no bias) u = 0.2 u = 0.8 u = 1 (max bias)

LR 0.08 ± 0.02 0.09 ± 0.02 0.09 ± 0.02 0.21 ± 0.07**

RF 0.10 ± 0.02 0.09 ± 0.02 0.12 ± 0.03 0.30 ± 0.03**gender

SVC 0.08 ± 0.02 0.08 ± 0.02 0.10 ± 0.03 0.25 ± 0.03**

LR 0.36 ± 0.03 0.36 ± 0.03 0.37 ± 0.03 0.29 ± 0.04**

RF 0.31 ± 0.03 0.31 ± 0.03 0.33 ± 0.03 0.16 ± 0.05**

Adult

marital-status

SVC 0.34 ± 0.03 0.34 ± 0.03 0.34 ± 0.03 0.27 ± 0.02**

LR 0.17 ± 0.03 0.17 ± 0.03 0.16 ± 0.02 0.16 ± 0.02

RF 0.15 ± 0.05 0.14 ± 0.05 0.13 ± 0.04 0.11 ± 0.05Compas race

SVC 0.18 ± 0.04 0.17 ± 0.04 0.15 ± 0.04 0.13 ± 0.03**

LR 0.33 ± 0.11 0.36 ± 0.12 0.30 ± 0.14 0.28 ± 0.13

RF 0.33 ± 0.06 0.32 ± 0.11 0.29 ± 0.08 0.16 ± 0.09**Crime race

SVC 0.32 ± 0.08 0.36 ± 0.09 0.30 ± 0.07 0.31 ± 0.07

LR 0.05 ± 0.04 0.05 ± 0.04 0.05 ± 0.04 0.05 ± 0.04

RF 0.02 ± 0.04 0.02 ± 0.03 0.02 ± 0.03 0.02 ± 0.04Folktables race

SVC 0.04 ± 0.03 0.04 ± 0.04 0.04 ± 0.03 0.04 ± 0.03

LR 0.07 ± 0.13 0.06 ± 0.11 0.07 ± 0.09 0.06 ± 0.07

RF 0.03 ± 0.06 0.03 ± 0.06 0.03 ± 0.07 0.03 ± 0.08German age

SVC 0.06 ± 0.08 0.03 ± 0.08 0.01 ± 0.08 0.04 ± 0.08

NIH gender DenseNet 0.01 ± 0.02 0.04 ± 0.01** 0.03 ± 0.02 0.06 ± 0.02**

Fitzpatrick17k skin type vgg16 0.09 ± 0.05 0.11 ± 0.06 0.11 ± 0.05 0.11 ± 0.05
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Table B.13: Demographic parity (DP) varying the percentage of minority-group points
retained in the training set from u = 0 (no bias) to u = 1 (maximum bias).

DP

Dataset sensitive model u = 0 (no bias) u = 0.2 u = 0.8 u = 1 (max bias)

LR 0.18 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.20 ± 0.01**

RF 0.18 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.21 ± 0.01**gender

SVC 0.17 ± 0.00 0.17 ± 0.00 0.18 ± 0.01* 0.20 ± 0.01**

LR 0.37 ± 0.01 0.37 ± 0.01 0.38 ± 0.01 0.36 ± 0.02

RF 0.36 ± 0.02 0.35 ± 0.02 0.36 ± 0.01 0.31 ± 0.02**

Adult

marital-status

SVC 0.36 ± 0.01 0.36 ± 0.01 0.36 ± 0.01 0.34 ± 0.01**

LR 0.26 ± 0.03 0.27 ± 0.03 0.26 ± 0.03 0.25 ± 0.03

RF 0.21 ± 0.05 0.20 ± 0.04 0.19 ± 0.04 0.17 ± 0.05Compas race

SVC 0.26 ± 0.02 0.25 ± 0.02 0.23 ± 0.03** 0.22 ± 0.03**

LR 0.62 ± 0.06 0.63 ± 0.05 0.61 ± 0.05 0.61 ± 0.05

RF 0.62 ± 0.07 0.63 ± 0.07 0.61 ± 0.06 0.53 ± 0.07**Crime race

SVC 0.62 ± 0.07 0.62 ± 0.06 0.61 ± 0.05 0.63 ± 0.06

LR 0.06 ± 0.03 0.06 ± 0.03 0.06 ± 0.03 0.06 ± 0.03

RF 0.05 ± 0.03 0.05 ± 0.03 0.04 ± 0.04 0.04 ± 0.03Folktables race

SVC 0.06 ± 0.03 0.06 ± 0.03 0.05 ± 0.02 0.05 ± 0.02

LR 0.06 ± 0.13 0.07 ± 0.09 0.04 ± 0.09 0.04 ± 0.08

RF 0.09 ± 0.08 0.07 ± 0.08 0.03 ± 0.09 0.04 ± 0.08German age

SVC 0.09 ± 0.10 0.06 ± 0.09 0.04 ± 0.07 0.07 ± 0.04

NIH gender DenseNet 0.00 ± 0.00 0.01 ± 0.00** 0.01 ± 0.01* 0.01 ± 0.01*

Fitzpatrick17k skin type vgg16 0.15 ± 0.02 0.14 ± 0.02 0.11 ± 0.02** 0.09 ± 0.02**
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Appendix B.2. Label bias

Table B.14: Balanced accuracy as the percentage of flipped positives in the disadvantaged
group varies from f = 0 (no bias) to f = 1 (maximum bias).

Balanced Accuracy

Dataset sensitive model f = 0 (no bias) f = 0.2 f = 0.8 f = 1 (max bias)

LR 0.77 ± 0.00 0.76 ± 0.01* 0.73 ± 0.00** 0.73 ± 0.00**

RF 0.78 ± 0.00 0.77 ± 0.01* 0.74 ± 0.01** 0.74 ± 0.00**gender

SVC 0.77 ± 0.01 0.76 ± 0.01 0.73 ± 0.01** 0.73 ± 0.01**

LR 0.77 ± 0.00 0.76 ± 0.01* 0.75 ± 0.01** 0.75 ± 0.01**

RF 0.78 ± 0.00 0.77 ± 0.00** 0.75 ± 0.00** 0.75 ± 0.00**

Adult

marital-status

SVC 0.77 ± 0.01 0.76 ± 0.01 0.75 ± 0.01** 0.75 ± 0.01**

LR 0.67 ± 0.02 0.68 ± 0.02 0.58 ± 0.01** 0.55 ± 0.01**

RF 0.69 ± 0.02 0.69 ± 0.02 0.59 ± 0.01** 0.57 ± 0.01**Compas race

SVC 0.65 ± 0.03 0.66 ± 0.02 0.51 ± 0.01** 0.50 ± 0.00**

LR 0.84 ± 0.02 0.83 ± 0.02 0.82 ± 0.02 0.81 ± 0.03

RF 0.83 ± 0.03 0.83 ± 0.02 0.82 ± 0.03 0.81 ± 0.02Crime race

SVC 0.84 ± 0.02 0.84 ± 0.02 0.82 ± 0.02 0.81 ± 0.02*

LR 0.73 ± 0.01 0.73 ± 0.01 0.72 ± 0.01 0.72 ± 0.01

RF 0.78 ± 0.00 0.78 ± 0.01 0.78 ± 0.01 0.78 ± 0.01Folktables race

SVC 0.72 ± 0.01 0.72 ± 0.01 0.73 ± 0.01 0.73 ± 0.01

LR 0.66 ± 0.06 0.68 ± 0.07 0.70 ± 0.08 0.70 ± 0.08

RF 0.68 ± 0.06 0.67 ± 0.05 0.72 ± 0.05 0.71 ± 0.05German age

SVC 0.66 ± 0.07 0.66 ± 0.07 0.70 ± 0.07 0.70 ± 0.06

NIH gender DenseNet 0.64 ± 0.02 0.65 ± 0.01 0.61 ± 0.02* 0.59 ± 0.02**

Fitzpatrick17k skin type vgg16 0.73 ± 0.01 0.71 ± 0.01** 0.70 ± 0.02** 0.70 ± 0.02**
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Table B.15: Prediction quality parity (PQP) as the percentage of flipped positives in the
disadvantaged group varies from f = 0 (no bias) to f = 1 (maximum bias).

PQP

Dataset sensitive model f = 0 (no bias) f = 0.2 f = 0.8 f = 1 (max bias)

LR 0.00 ± 0.01 0.06 ± 0.01** 0.21 ± 0.01** 0.23 ± 0.01**

RF 0.01 ± 0.01 0.06 ± 0.02** 0.24 ± 0.01** 0.25 ± 0.01**gender

SVC 0.01 ± 0.01 0.05 ± 0.01** 0.22 ± 0.01** 0.24 ± 0.01**

LR 0.09 ± 0.01 0.12 ± 0.02** 0.21 ± 0.01** 0.21 ± 0.01**

RF 0.08 ± 0.01 0.11 ± 0.02** 0.25 ± 0.01** 0.25 ± 0.01**

Adult

marital-status

SVC 0.08 ± 0.02 0.11 ± 0.01** 0.23 ± 0.01** 0.24 ± 0.01**

LR -0.06 ± 0.03 -0.03 ± 0.05 0.06 ± 0.02** 0.05 ± 0.02**

RF -0.01 ± 0.05 0.00 ± 0.06 0.06 ± 0.03** 0.05 ± 0.02**Compas race

SVC -0.05 ± 0.03 -0.04 ± 0.05 0.01 ± 0.01** 0.00 ± 0.00**

LR -0.02 ± 0.08 0.01 ± 0.07 0.11 ± 0.10* 0.13 ± 0.08**

RF -0.03 ± 0.05 0.02 ± 0.06 0.16 ± 0.07** 0.17 ± 0.06**Crime race

SVC -0.03 ± 0.08 0.01 ± 0.08 0.10 ± 0.07** 0.14 ± 0.07**

LR 0.01 ± 0.04 0.01 ± 0.04 0.02 ± 0.04 0.02 ± 0.04

RF 0.01 ± 0.03 0.00 ± 0.02 0.00 ± 0.03 0.01 ± 0.03Folktables race

SVC 0.02 ± 0.03 0.02 ± 0.04 0.02 ± 0.04 0.02 ± 0.04

LR 0.07 ± 0.13 0.06 ± 0.15 0.05 ± 0.16 0.06 ± 0.14

RF -0.01 ± 0.07 0.05 ± 0.09 0.07 ± 0.09 0.09 ± 0.14German age

SVC 0.03 ± 0.10 0.02 ± 0.10 0.02 ± 0.11 0.03 ± 0.15

NIH gender DenseNet -0.01 ± 0.01 0.01 ± 0.01** 0.10 ± 0.01** 0.14 ± 0.01**

Fitzpatrick17k skin type vgg16 -0.01 ± 0.01 0.01 ± 0.01** 0.20 ± 0.02** 0.05 ± 0.01**
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Table B.16: True positive rate (TPR) of the advantaged group as the percentage of flipped
positives in the disadvantaged group varies from f = 0 (no bias) to f = 1 (maximum bias).

TPR (s = a)

Dataset sensitive model f = 0 (no bias) f = 0.2 f = 0.8 f = 1 (max bias)

LR 0.61 ± 0.01 0.61 ± 0.01 0.60 ± 0.01 0.60 ± 0.01

RF 0.64 ± 0.01 0.63 ± 0.01 0.62 ± 0.01** 0.62 ± 0.01**gender

SVC 0.61 ± 0.01 0.60 ± 0.01 0.60 ± 0.01 0.59 ± 0.01**

LR 0.65 ± 0.01 0.65 ± 0.01 0.65 ± 0.01 0.65 ± 0.01

RF 0.66 ± 0.01 0.66 ± 0.01 0.65 ± 0.01 0.66 ± 0.01

Adult

marital-status

SVC 0.64 ± 0.01 0.64 ± 0.01 0.65 ± 0.01 0.65 ± 0.01

LR 0.85 ± 0.02 0.76 ± 0.03** 0.33 ± 0.04** 0.22 ± 0.04**

RF 0.81 ± 0.03 0.72 ± 0.03** 0.34 ± 0.05** 0.25 ± 0.05**Compas race

SVC 0.85 ± 0.04 0.79 ± 0.03** 0.03 ± 0.06** 0.00 ± 0.00**

LR 0.90 ± 0.04 0.89 ± 0.04 0.87 ± 0.04 0.85 ± 0.05

RF 0.90 ± 0.03 0.89 ± 0.03 0.86 ± 0.03** 0.85 ± 0.02**Crime race

SVC 0.91 ± 0.04 0.90 ± 0.04 0.88 ± 0.04 0.87 ± 0.04

LR 0.83 ± 0.01 0.82 ± 0.01 0.77 ± 0.01** 0.75 ± 0.01**

RF 0.85 ± 0.01 0.85 ± 0.01 0.83 ± 0.02** 0.83 ± 0.02**Folktables race

SVC 0.85 ± 0.01 0.83 ± 0.01** 0.78 ± 0.01** 0.76 ± 0.01**

LR 0.89 ± 0.05 0.88 ± 0.05 0.82 ± 0.05** 0.79 ± 0.06**

RF 0.93 ± 0.02 0.91 ± 0.04 0.86 ± 0.05* 0.82 ± 0.05*German age

SVC 0.93 ± 0.02 0.89 ± 0.06 0.83 ± 0.05** 0.82 ± 0.06**

NIH gender DenseNet 0.46 ± 0.03 0.49 ± 0.03 0.59 ± 0.06** 0.52 ± 0.05*

Fitzpatrick17k skin type vgg16 0.70 ± 0.02 0.70 ± 0.02 0.69 ± 0.02 0.70 ± 0.01
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Table B.17: True positive rate (TPR) of the disadvantaged group as the percentage of
flipped positives in the disadvantaged group varies from f = 0 (no bias) to f = 1 (maxi-
mum bias).

TPR (s = d)

Dataset sensitive model f = 0 (no bias) f = 0.2 f = 0.8 f = 1 (max bias)

LR 0.53 ± 0.02 0.40 ± 0.03** 0.07 ± 0.02** 0.05 ± 0.02**

RF 0.54 ± 0.02 0.43 ± 0.04** 0.06 ± 0.01** 0.04 ± 0.01**gender

SVC 0.53 ± 0.02 0.42 ± 0.03** 0.06 ± 0.02** 0.03 ± 0.01**

LR 0.29 ± 0.03 0.22 ± 0.04** 0.03 ± 0.01** 0.02 ± 0.01**

RF 0.35 ± 0.03 0.29 ± 0.03** 0.00 ± 0.00** 0.00 ± 0.00**

Adult

marital-status

SVC 0.30 ± 0.03 0.26 ± 0.03* 0.01 ± 0.01** 0.00 ± 0.00**

LR 0.68 ± 0.03 0.55 ± 0.05** 0.11 ± 0.02** 0.07 ± 0.02**

RF 0.66 ± 0.03 0.57 ± 0.04** 0.16 ± 0.02** 0.09 ± 0.01**Compas race

SVC 0.68 ± 0.06 0.58 ± 0.05** 0.01 ± 0.02** 0.00 ± 0.00**

LR 0.57 ± 0.10 0.50 ± 0.11 0.25 ± 0.15** 0.18 ± 0.12**

RF 0.57 ± 0.07 0.47 ± 0.10 0.19 ± 0.12** 0.18 ± 0.10**Crime race

SVC 0.59 ± 0.08 0.50 ± 0.11 0.26 ± 0.11** 0.18 ± 0.10**

LR 0.79 ± 0.04 0.77 ± 0.04 0.69 ± 0.04** 0.66 ± 0.04**

RF 0.83 ± 0.03 0.82 ± 0.03 0.77 ± 0.05* 0.77 ± 0.05*Folktables race

SVC 0.80 ± 0.04 0.78 ± 0.04 0.70 ± 0.04** 0.67 ± 0.04**

LR 0.82 ± 0.13 0.78 ± 0.15 0.60 ± 0.17* 0.54 ± 0.13**

RF 0.90 ± 0.07 0.80 ± 0.09** 0.60 ± 0.10** 0.50 ± 0.16**German age

SVC 0.87 ± 0.09 0.83 ± 0.14 0.61 ± 0.11** 0.55 ± 0.11**

NIH gender DenseNet 0.44 ± 0.05 0.40 ± 0.04 0.18 ± 0.07** 0.03 ± 0.01**

Fitzpatrick17k skin type vgg16 0.61 ± 0.05 0.53 ± 0.06* 0.48 ± 0.08** 0.42 ± 0.05**
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Table B.18: Equal opportunity (EO) as the percentage of flipped positives in the disad-
vantaged group varies from f = 0 (no bias) to f = 1 (maximum bias).

EO

Dataset sensitive model f = 0 (no bias) f = 0.2 f = 0.8 f = 1 (max bias)

LR 0.08 ± 0.02 0.21 ± 0.02** 0.52 ± 0.03** 0.55 ± 0.02**

RF 0.10 ± 0.02 0.20 ± 0.04** 0.56 ± 0.01** 0.57 ± 0.02**gender

SVC 0.08 ± 0.02 0.18 ± 0.02** 0.54 ± 0.02** 0.56 ± 0.01**

LR 0.36 ± 0.03 0.43 ± 0.04** 0.62 ± 0.02** 0.63 ± 0.02**

RF 0.31 ± 0.03 0.37 ± 0.03** 0.65 ± 0.01** 0.66 ± 0.01**

Adult

marital-status

SVC 0.34 ± 0.03 0.39 ± 0.02** 0.65 ± 0.01** 0.65 ± 0.01**

LR 0.17 ± 0.03 0.21 ± 0.05 0.21 ± 0.05 0.15 ± 0.05

RF 0.15 ± 0.05 0.15 ± 0.06 0.18 ± 0.05 0.15 ± 0.05Compas race

SVC 0.18 ± 0.04 0.21 ± 0.04 0.02 ± 0.04** 0.00 ± 0.00**

LR 0.33 ± 0.11 0.39 ± 0.11 0.62 ± 0.17** 0.67 ± 0.15**

RF 0.33 ± 0.06 0.42 ± 0.12 0.66 ± 0.13** 0.67 ± 0.10**Crime race

SVC 0.32 ± 0.08 0.40 ± 0.12 0.62 ± 0.12** 0.69 ± 0.12**

LR 0.05 ± 0.04 0.05 ± 0.04 0.08 ± 0.04 0.09 ± 0.04

RF 0.02 ± 0.04 0.02 ± 0.03 0.05 ± 0.04 0.06 ± 0.03Folktables race

SVC 0.04 ± 0.03 0.06 ± 0.04 0.08 ± 0.03* 0.09 ± 0.04*

LR 0.07 ± 0.13 0.10 ± 0.14 0.22 ± 0.16 0.25 ± 0.10**

RF 0.03 ± 0.06 0.11 ± 0.08 0.26 ± 0.09** 0.32 ± 0.15**German age

SVC 0.06 ± 0.08 0.06 ± 0.11 0.22 ± 0.10** 0.26 ± 0.13**

NIH gender DenseNet 0.01 ± 0.02 0.09 ± 0.02** 0.40 ± 0.03** 0.48 ± 0.01**

Fitzpatrick17k skin type vgg16 0.09 ± 0.05 0.16 ± 0.06* 0.21 ± 0.08** 0.28 ± 0.02**
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Table B.19: Demographic parity (DP) as the percentage of flipped positives in the disad-
vantaged group varies from f = 0 (no bias) to f = 1 (maximum bias).

DP

Dataset sensitive model f = 0 (no bias) f = 0.2 f = 0.8 f = 1 (max bias)

LR 0.18 ± 0.01 0.20 ± 0.01** 0.25 ± 0.01** 0.25 ± 0.01**

RF 0.18 ± 0.01 0.20 ± 0.01** 0.24 ± 0.01** 0.24 ± 0.01**gender

SVC 0.17 ± 0.00 0.19 ± 0.01** 0.24 ± 0.01** 0.24 ± 0.01**

LR 0.37 ± 0.01 0.38 ± 0.01 0.40 ± 0.01** 0.40 ± 0.01**

RF 0.36 ± 0.02 0.36 ± 0.02 0.38 ± 0.01* 0.38 ± 0.02

Adult

marital-status

SVC 0.36 ± 0.01 0.37 ± 0.01 0.39 ± 0.01** 0.39 ± 0.01**

LR 0.26 ± 0.03 0.28 ± 0.02 0.18 ± 0.04** 0.12 ± 0.03**

RF 0.21 ± 0.05 0.20 ± 0.05 0.16 ± 0.04 0.12 ± 0.04**Compas race

SVC 0.26 ± 0.02 0.28 ± 0.02 0.02 ± 0.03** 0.00 ± 0.00**

LR 0.62 ± 0.06 0.63 ± 0.06 0.69 ± 0.07 0.70 ± 0.08

RF 0.62 ± 0.07 0.64 ± 0.07 0.67 ± 0.06 0.67 ± 0.06Crime race

SVC 0.62 ± 0.07 0.64 ± 0.07 0.70 ± 0.06* 0.70 ± 0.07

LR 0.06 ± 0.03 0.07 ± 0.03 0.09 ± 0.03 0.09 ± 0.03

RF 0.05 ± 0.03 0.06 ± 0.03 0.09 ± 0.03* 0.09 ± 0.04Folktables race

SVC 0.06 ± 0.03 0.06 ± 0.03 0.09 ± 0.03 0.09 ± 0.03

LR 0.06 ± 0.13 0.11 ± 0.13 0.24 ± 0.16* 0.27 ± 0.15**

RF 0.09 ± 0.08 0.12 ± 0.08 0.28 ± 0.12** 0.31 ± 0.11**German age

SVC 0.09 ± 0.10 0.09 ± 0.11 0.26 ± 0.14* 0.30 ± 0.11**

NIH gender DenseNet 0.00 ± 0.00 0.02 ± 0.00** 0.10 ± 0.02** 0.10 ± 0.01**

Fitzpatrick17k skin type vgg16 0.15 ± 0.02 0.17 ± 0.02 0.22 ± 0.02** 0.23 ± 0.02**

Appendix C. Additional Results on Bias Detection

In this section, we report bias detection results regarding all datasets
except Folktables and NIH, which are discussed in Section 5.

45



0 0.2 0.8 1

0.4

0.6

0.8

1.0

RD( )

Underrepresentation

0 0.2 0.8 1

0.4

0.6

0.8

1.0
Label bias

0 0.25 0.50 0.75 1

0.4

0.6

0.8

1.0
Proxies

0 0.2 0.8 0.95
0.0

0.2

0.4

0.6

SD( )

0 0.2 0.8 0.95
0.0

0.2

0.4

0.6

0 0.25 0.50 0.75 1
0.0

0.2

0.4

0.6

0 0.2 0.8 0.95
u

0.92

0.94

0.96

0.98

1.00

sAUC( )

0 0.2 0.8 1
f

0.92

0.94

0.96

0.98

1.00

0 0.25 0.50 0.75 1
correlation

0.92

0.94

0.96

0.98

1.00

Adult (gender)

Figure C.6: Results of the bias detection methods on Adult (gender). The columns repre-
sent the three different scenarios while the rows represent the three bias detection methods.
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Figure C.7: Results of the bias detection methods on Adult (marital status). The columns
represent the three different scenarios while the rows represent the three bias detection
methods.
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Figure C.8: Results of the bias detection methods on Compas. The columns represent the
three different scenarios while the rows represent the three bias detection methods.
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Figure C.9: Results of the bias detection methods on Crime. The columns represent the
three different scenarios while the rows represent the three bias detection methods.
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Figure C.10: Results of the bias detection methods on German. The columns represent
the three different scenarios while the rows represent the three bias detection methods.
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Figure C.11: Results of the bias detection methods on Fitzpatrick17k. The columns
represent the three different scenarios while the rows represent the three bias detection
methods.
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51

https://doi.org/10.1609/aaai.v38i20.30203
http://dx.doi.org/10.1609/AAAI.V38I20.30203
https://doi.org/10.1016/j.ipm.2022.103224
http://dx.doi.org/10.1016/J.IPM.2022.103224
http://dx.doi.org/10.1016/J.IPM.2022.103224
https://openreview.net/forum?id=jr03SfWsBS
https://doi.org/10.1109/TPAMI.2024.3361979
https://doi.org/10.1109/TPAMI.2024.3361979
http://dx.doi.org/10.1109/TPAMI.2024.3361979


pp. 2796–2806. URL: https://proceedings.neurips.cc/paper/2018/
hash/83cdcec08fbf90370fcf53bdd56604ff-Abstract.html.

Drukker, K., Chen, W., Gichoya, J., Gruszauskas, N., Kalpathy-Cramer, J.,
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